The Heisenberg envelope for the Hochschild algebra of a finite-dimensional lie algebra

We consider some kind of Hopf algebra assigned to any finite-dimensional Lie algebra. This algebra was pointed out by Hochschild. We prove several statements on its embeddings into an algebra of formal power series. In particular, we obtain similar results for Lie algebras. More precisely, a Lie alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2013-09, Vol.193 (4), p.580-585
Hauptverfasser: Razmyslov, Yu. P., Pogudin, G. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 585
container_issue 4
container_start_page 580
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 193
creator Razmyslov, Yu. P.
Pogudin, G. A.
description We consider some kind of Hopf algebra assigned to any finite-dimensional Lie algebra. This algebra was pointed out by Hochschild. We prove several statements on its embeddings into an algebra of formal power series. In particular, we obtain similar results for Lie algebras. More precisely, a Lie algebra can be embedded into a Lie algebra of special derivations with coefficients in rational functions in (quasi)polynomials.
doi_str_mv 10.1007/s10958-013-1484-5
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A352488722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A352488722</galeid><sourcerecordid>A352488722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3375-b624b1c0307b0b2e3220a76945151d326726a165a1c6fd6f64a6e7590ad5acd73</originalsourceid><addsrcrecordid>eNp9kctKAzEUhgdRsF4ewF3AlYtoLpNkuiziDQqCt23IZE6mkWlSklH07U2pLgpFsjgh5_sOh_xVdUbJJSVEXWVKpqLBhHJM66bGYq-aUKE4btRU7Jc7UQxzrurD6ijnd1Ic2fBJ9fayAHQPPkNoIfUIwicMcQXIxYTGdS_aRbYLP3TIDD20yaDokEHOBz8C7vwSQvYxmAENHv6Yk-rAmSHD6W89rl5vb16u7_H88e7hejbHtuwicCtZ3VJLOFEtaRlwxohRcloLKmjHmVRMGiqFoVa6TjpZGwlKTInphLGd4sfV-WZubwbQPrg4JmOXPls944LVTaMYKxTeQfUQIJkhBnC-PG_xlzv4cjpYertTuNgSCjPC19ibj5z1w_PTNks3rE0x5wROr5JfmvStKdHrLPUmS12y1OsstSgO2zi5sKGHpN_jRyp_nv-RfgDzCp4H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Heisenberg envelope for the Hochschild algebra of a finite-dimensional lie algebra</title><source>SpringerLink Journals</source><creator>Razmyslov, Yu. P. ; Pogudin, G. A.</creator><creatorcontrib>Razmyslov, Yu. P. ; Pogudin, G. A.</creatorcontrib><description>We consider some kind of Hopf algebra assigned to any finite-dimensional Lie algebra. This algebra was pointed out by Hochschild. We prove several statements on its embeddings into an algebra of formal power series. In particular, we obtain similar results for Lie algebras. More precisely, a Lie algebra can be embedded into a Lie algebra of special derivations with coefficients in rational functions in (quasi)polynomials.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-013-1484-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algebra ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2013-09, Vol.193 (4), p.580-585</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3375-b624b1c0307b0b2e3220a76945151d326726a165a1c6fd6f64a6e7590ad5acd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-013-1484-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-013-1484-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Razmyslov, Yu. P.</creatorcontrib><creatorcontrib>Pogudin, G. A.</creatorcontrib><title>The Heisenberg envelope for the Hochschild algebra of a finite-dimensional lie algebra</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider some kind of Hopf algebra assigned to any finite-dimensional Lie algebra. This algebra was pointed out by Hochschild. We prove several statements on its embeddings into an algebra of formal power series. In particular, we obtain similar results for Lie algebras. More precisely, a Lie algebra can be embedded into a Lie algebra of special derivations with coefficients in rational functions in (quasi)polynomials.</description><subject>Algebra</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kctKAzEUhgdRsF4ewF3AlYtoLpNkuiziDQqCt23IZE6mkWlSklH07U2pLgpFsjgh5_sOh_xVdUbJJSVEXWVKpqLBhHJM66bGYq-aUKE4btRU7Jc7UQxzrurD6ijnd1Ic2fBJ9fayAHQPPkNoIfUIwicMcQXIxYTGdS_aRbYLP3TIDD20yaDokEHOBz8C7vwSQvYxmAENHv6Yk-rAmSHD6W89rl5vb16u7_H88e7hejbHtuwicCtZ3VJLOFEtaRlwxohRcloLKmjHmVRMGiqFoVa6TjpZGwlKTInphLGd4sfV-WZubwbQPrg4JmOXPls944LVTaMYKxTeQfUQIJkhBnC-PG_xlzv4cjpYertTuNgSCjPC19ibj5z1w_PTNks3rE0x5wROr5JfmvStKdHrLPUmS12y1OsstSgO2zi5sKGHpN_jRyp_nv-RfgDzCp4H</recordid><startdate>20130902</startdate><enddate>20130902</enddate><creator>Razmyslov, Yu. P.</creator><creator>Pogudin, G. A.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20130902</creationdate><title>The Heisenberg envelope for the Hochschild algebra of a finite-dimensional lie algebra</title><author>Razmyslov, Yu. P. ; Pogudin, G. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3375-b624b1c0307b0b2e3220a76945151d326726a165a1c6fd6f64a6e7590ad5acd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebra</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Razmyslov, Yu. P.</creatorcontrib><creatorcontrib>Pogudin, G. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Razmyslov, Yu. P.</au><au>Pogudin, G. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Heisenberg envelope for the Hochschild algebra of a finite-dimensional lie algebra</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2013-09-02</date><risdate>2013</risdate><volume>193</volume><issue>4</issue><spage>580</spage><epage>585</epage><pages>580-585</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider some kind of Hopf algebra assigned to any finite-dimensional Lie algebra. This algebra was pointed out by Hochschild. We prove several statements on its embeddings into an algebra of formal power series. In particular, we obtain similar results for Lie algebras. More precisely, a Lie algebra can be embedded into a Lie algebra of special derivations with coefficients in rational functions in (quasi)polynomials.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10958-013-1484-5</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2013-09, Vol.193 (4), p.580-585
issn 1072-3374
1573-8795
language eng
recordid cdi_gale_infotracmisc_A352488722
source SpringerLink Journals
subjects Algebra
Mathematics
Mathematics and Statistics
title The Heisenberg envelope for the Hochschild algebra of a finite-dimensional lie algebra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Heisenberg%20envelope%20for%20the%20Hochschild%20algebra%20of%20a%20finite-dimensional%20lie%20algebra&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Razmyslov,%20Yu.%20P.&rft.date=2013-09-02&rft.volume=193&rft.issue=4&rft.spage=580&rft.epage=585&rft.pages=580-585&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-013-1484-5&rft_dat=%3Cgale_cross%3EA352488722%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A352488722&rfr_iscdi=true