The Heisenberg envelope for the Hochschild algebra of a finite-dimensional lie algebra
We consider some kind of Hopf algebra assigned to any finite-dimensional Lie algebra. This algebra was pointed out by Hochschild. We prove several statements on its embeddings into an algebra of formal power series. In particular, we obtain similar results for Lie algebras. More precisely, a Lie alg...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2013-09, Vol.193 (4), p.580-585 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 585 |
---|---|
container_issue | 4 |
container_start_page | 580 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 193 |
creator | Razmyslov, Yu. P. Pogudin, G. A. |
description | We consider some kind of Hopf algebra assigned to any finite-dimensional Lie algebra. This algebra was pointed out by Hochschild. We prove several statements on its embeddings into an algebra of formal power series. In particular, we obtain similar results for Lie algebras. More precisely, a Lie algebra can be embedded into a Lie algebra of special derivations with coefficients in rational functions in (quasi)polynomials. |
doi_str_mv | 10.1007/s10958-013-1484-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A352488722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A352488722</galeid><sourcerecordid>A352488722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3375-b624b1c0307b0b2e3220a76945151d326726a165a1c6fd6f64a6e7590ad5acd73</originalsourceid><addsrcrecordid>eNp9kctKAzEUhgdRsF4ewF3AlYtoLpNkuiziDQqCt23IZE6mkWlSklH07U2pLgpFsjgh5_sOh_xVdUbJJSVEXWVKpqLBhHJM66bGYq-aUKE4btRU7Jc7UQxzrurD6ijnd1Ic2fBJ9fayAHQPPkNoIfUIwicMcQXIxYTGdS_aRbYLP3TIDD20yaDokEHOBz8C7vwSQvYxmAENHv6Yk-rAmSHD6W89rl5vb16u7_H88e7hejbHtuwicCtZ3VJLOFEtaRlwxohRcloLKmjHmVRMGiqFoVa6TjpZGwlKTInphLGd4sfV-WZubwbQPrg4JmOXPls944LVTaMYKxTeQfUQIJkhBnC-PG_xlzv4cjpYertTuNgSCjPC19ibj5z1w_PTNks3rE0x5wROr5JfmvStKdHrLPUmS12y1OsstSgO2zi5sKGHpN_jRyp_nv-RfgDzCp4H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Heisenberg envelope for the Hochschild algebra of a finite-dimensional lie algebra</title><source>SpringerLink Journals</source><creator>Razmyslov, Yu. P. ; Pogudin, G. A.</creator><creatorcontrib>Razmyslov, Yu. P. ; Pogudin, G. A.</creatorcontrib><description>We consider some kind of Hopf algebra assigned to any finite-dimensional Lie algebra. This algebra was pointed out by Hochschild. We prove several statements on its embeddings into an algebra of formal power series. In particular, we obtain similar results for Lie algebras. More precisely, a Lie algebra can be embedded into a Lie algebra of special derivations with coefficients in rational functions in (quasi)polynomials.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-013-1484-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algebra ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2013-09, Vol.193 (4), p.580-585</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3375-b624b1c0307b0b2e3220a76945151d326726a165a1c6fd6f64a6e7590ad5acd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-013-1484-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-013-1484-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Razmyslov, Yu. P.</creatorcontrib><creatorcontrib>Pogudin, G. A.</creatorcontrib><title>The Heisenberg envelope for the Hochschild algebra of a finite-dimensional lie algebra</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider some kind of Hopf algebra assigned to any finite-dimensional Lie algebra. This algebra was pointed out by Hochschild. We prove several statements on its embeddings into an algebra of formal power series. In particular, we obtain similar results for Lie algebras. More precisely, a Lie algebra can be embedded into a Lie algebra of special derivations with coefficients in rational functions in (quasi)polynomials.</description><subject>Algebra</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kctKAzEUhgdRsF4ewF3AlYtoLpNkuiziDQqCt23IZE6mkWlSklH07U2pLgpFsjgh5_sOh_xVdUbJJSVEXWVKpqLBhHJM66bGYq-aUKE4btRU7Jc7UQxzrurD6ijnd1Ic2fBJ9fayAHQPPkNoIfUIwicMcQXIxYTGdS_aRbYLP3TIDD20yaDokEHOBz8C7vwSQvYxmAENHv6Yk-rAmSHD6W89rl5vb16u7_H88e7hejbHtuwicCtZ3VJLOFEtaRlwxohRcloLKmjHmVRMGiqFoVa6TjpZGwlKTInphLGd4sfV-WZubwbQPrg4JmOXPls944LVTaMYKxTeQfUQIJkhBnC-PG_xlzv4cjpYertTuNgSCjPC19ibj5z1w_PTNks3rE0x5wROr5JfmvStKdHrLPUmS12y1OsstSgO2zi5sKGHpN_jRyp_nv-RfgDzCp4H</recordid><startdate>20130902</startdate><enddate>20130902</enddate><creator>Razmyslov, Yu. P.</creator><creator>Pogudin, G. A.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20130902</creationdate><title>The Heisenberg envelope for the Hochschild algebra of a finite-dimensional lie algebra</title><author>Razmyslov, Yu. P. ; Pogudin, G. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3375-b624b1c0307b0b2e3220a76945151d326726a165a1c6fd6f64a6e7590ad5acd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebra</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Razmyslov, Yu. P.</creatorcontrib><creatorcontrib>Pogudin, G. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Razmyslov, Yu. P.</au><au>Pogudin, G. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Heisenberg envelope for the Hochschild algebra of a finite-dimensional lie algebra</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2013-09-02</date><risdate>2013</risdate><volume>193</volume><issue>4</issue><spage>580</spage><epage>585</epage><pages>580-585</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider some kind of Hopf algebra assigned to any finite-dimensional Lie algebra. This algebra was pointed out by Hochschild. We prove several statements on its embeddings into an algebra of formal power series. In particular, we obtain similar results for Lie algebras. More precisely, a Lie algebra can be embedded into a Lie algebra of special derivations with coefficients in rational functions in (quasi)polynomials.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10958-013-1484-5</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2013-09, Vol.193 (4), p.580-585 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_gale_infotracmisc_A352488722 |
source | SpringerLink Journals |
subjects | Algebra Mathematics Mathematics and Statistics |
title | The Heisenberg envelope for the Hochschild algebra of a finite-dimensional lie algebra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Heisenberg%20envelope%20for%20the%20Hochschild%20algebra%20of%20a%20finite-dimensional%20lie%20algebra&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Razmyslov,%20Yu.%20P.&rft.date=2013-09-02&rft.volume=193&rft.issue=4&rft.spage=580&rft.epage=585&rft.pages=580-585&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-013-1484-5&rft_dat=%3Cgale_cross%3EA352488722%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A352488722&rfr_iscdi=true |