Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints

Submodular maximization generalizes many fundamental problems in discrete optimization, including Max-Cut in directed/undirected graphs, maximum coverage, maximum facility location, and marketing over social networks. In this paper we consider the problem of maximizing any submodular function subjec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of operations research 2013-11, Vol.38 (4), p.729-739
Hauptverfasser: Kulik, Ariel, Shachnai, Hadas, Tamir, Tami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 739
container_issue 4
container_start_page 729
container_title Mathematics of operations research
container_volume 38
creator Kulik, Ariel
Shachnai, Hadas
Tamir, Tami
description Submodular maximization generalizes many fundamental problems in discrete optimization, including Max-Cut in directed/undirected graphs, maximum coverage, maximum facility location, and marketing over social networks. In this paper we consider the problem of maximizing any submodular function subject to d knapsack constraints, where d is a fixed constant. We establish a strong relation between the discrete problem and its continuous relaxation, obtained through extension by expectation of the submodular function. Formally, we show that, for any nonnegative submodular function, an α -approximation algorithm for the continuous relaxation implies a randomized ( α − )-approximation algorithm for the discrete problem. We use this relation to obtain an ( e −1 − )-approximation for the problem, and a nearly optimal (1 − e −1 − )-approximation ratio for the monotone case, for any > 0. We further show that the probabilistic domain defined by a continuous solution can be reduced to yield a polynomial-size domain, given an oracle for the extension by expectation. This leads to a deterministic version of our technique.
doi_str_mv 10.1287/moor.2013.0592
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A351429375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A351429375</galeid><jstor_id>24540880</jstor_id><sourcerecordid>A351429375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-56142ccfc314cd2c4a040ed6c8153d2da9143d0018094a0c48bca4176ab69b823</originalsourceid><addsrcrecordid>eNqFkl2LEzEUhoMoWFdvvRMGvBKcmu_MXJbix-Kq4Cp4IyGTyXRTO0nNyeDqrzdjXdZCQQIJyXnekzcnB6HHBC8JbdSLMca0pJiwJRYtvYMWRFBZC67IXbTATPJaSfHlPnoAsMWYCEX4An1d7fcpXvvRZB8DVENM1bsYYo7BVSb01fsYxpv95dSNsZ92pjCmaPyvP6rqh89X1dtg9mDst2pd8uRkfMjwEN0bzA7co7_rGfr86uWn9Zv64sPr8_XqorZC8VwLSTi1drCMcNtTyw3m2PXSNkSwnvamJZz1xXOD2xKzvOms4URJ08m2ayg7Q08Pectbvk8Ost7GKYVypSZccsUUleKW2pid0z4Msdi0owerV0wUCy1TM1WfoDYuuGR2pQqDL8dH_PIEX0bvRm9PCp4dCQqT3XXemAlAn19-PGaf_8N2E_jgoEzgN1cZDpJTXmyKAMkNep_K16afmmA9N4mem0TPTaLnJimCJwfBFnIJ3NCUC46bBt8WY35XGuF_-X4DHJbGug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464737265</pqid></control><display><type>article</type><title>Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints</title><source>Informs</source><source>JSTOR Mathematics &amp; Statistics</source><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Kulik, Ariel ; Shachnai, Hadas ; Tamir, Tami</creator><creatorcontrib>Kulik, Ariel ; Shachnai, Hadas ; Tamir, Tami</creatorcontrib><description>Submodular maximization generalizes many fundamental problems in discrete optimization, including Max-Cut in directed/undirected graphs, maximum coverage, maximum facility location, and marketing over social networks. In this paper we consider the problem of maximizing any submodular function subject to d knapsack constraints, where d is a fixed constant. We establish a strong relation between the discrete problem and its continuous relaxation, obtained through extension by expectation of the submodular function. Formally, we show that, for any nonnegative submodular function, an α -approximation algorithm for the continuous relaxation implies a randomized ( α − )-approximation algorithm for the discrete problem. We use this relation to obtain an ( e −1 − )-approximation for the problem, and a nearly optimal (1 − e −1 − )-approximation ratio for the monotone case, for any &gt; 0. We further show that the probabilistic domain defined by a continuous solution can be reduced to yield a polynomial-size domain, given an oracle for the extension by expectation. This leads to a deterministic version of our technique.</description><identifier>ISSN: 0364-765X</identifier><identifier>EISSN: 1526-5471</identifier><identifier>DOI: 10.1287/moor.2013.0592</identifier><identifier>CODEN: MOREDQ</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Analysis ; approximation algorithms ; Approximations ; Expectation-maximization algorithm ; generalized assignment problem ; knapsack constraints ; Knapsack problem ; Mathematical functions ; maximum coverage ; Optimization techniques ; Polynomials ; randomization ; Studies ; submodular maximization</subject><ispartof>Mathematics of operations research, 2013-11, Vol.38 (4), p.729-739</ispartof><rights>Copyright 2013, Institute for Operations Research and the Management Sciences</rights><rights>COPYRIGHT 2013 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Nov 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-56142ccfc314cd2c4a040ed6c8153d2da9143d0018094a0c48bca4176ab69b823</citedby><cites>FETCH-LOGICAL-c574t-56142ccfc314cd2c4a040ed6c8153d2da9143d0018094a0c48bca4176ab69b823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24540880$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/moor.2013.0592$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,832,3692,27924,27925,58017,58021,58250,58254,62616</link.rule.ids></links><search><creatorcontrib>Kulik, Ariel</creatorcontrib><creatorcontrib>Shachnai, Hadas</creatorcontrib><creatorcontrib>Tamir, Tami</creatorcontrib><title>Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints</title><title>Mathematics of operations research</title><description>Submodular maximization generalizes many fundamental problems in discrete optimization, including Max-Cut in directed/undirected graphs, maximum coverage, maximum facility location, and marketing over social networks. In this paper we consider the problem of maximizing any submodular function subject to d knapsack constraints, where d is a fixed constant. We establish a strong relation between the discrete problem and its continuous relaxation, obtained through extension by expectation of the submodular function. Formally, we show that, for any nonnegative submodular function, an α -approximation algorithm for the continuous relaxation implies a randomized ( α − )-approximation algorithm for the discrete problem. We use this relation to obtain an ( e −1 − )-approximation for the problem, and a nearly optimal (1 − e −1 − )-approximation ratio for the monotone case, for any &gt; 0. We further show that the probabilistic domain defined by a continuous solution can be reduced to yield a polynomial-size domain, given an oracle for the extension by expectation. This leads to a deterministic version of our technique.</description><subject>Analysis</subject><subject>approximation algorithms</subject><subject>Approximations</subject><subject>Expectation-maximization algorithm</subject><subject>generalized assignment problem</subject><subject>knapsack constraints</subject><subject>Knapsack problem</subject><subject>Mathematical functions</subject><subject>maximum coverage</subject><subject>Optimization techniques</subject><subject>Polynomials</subject><subject>randomization</subject><subject>Studies</subject><subject>submodular maximization</subject><issn>0364-765X</issn><issn>1526-5471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFkl2LEzEUhoMoWFdvvRMGvBKcmu_MXJbix-Kq4Cp4IyGTyXRTO0nNyeDqrzdjXdZCQQIJyXnekzcnB6HHBC8JbdSLMca0pJiwJRYtvYMWRFBZC67IXbTATPJaSfHlPnoAsMWYCEX4An1d7fcpXvvRZB8DVENM1bsYYo7BVSb01fsYxpv95dSNsZ92pjCmaPyvP6rqh89X1dtg9mDst2pd8uRkfMjwEN0bzA7co7_rGfr86uWn9Zv64sPr8_XqorZC8VwLSTi1drCMcNtTyw3m2PXSNkSwnvamJZz1xXOD2xKzvOms4URJ08m2ayg7Q08Pectbvk8Ost7GKYVypSZccsUUleKW2pid0z4Msdi0owerV0wUCy1TM1WfoDYuuGR2pQqDL8dH_PIEX0bvRm9PCp4dCQqT3XXemAlAn19-PGaf_8N2E_jgoEzgN1cZDpJTXmyKAMkNep_K16afmmA9N4mem0TPTaLnJimCJwfBFnIJ3NCUC46bBt8WY35XGuF_-X4DHJbGug</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Kulik, Ariel</creator><creator>Shachnai, Hadas</creator><creator>Tamir, Tami</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>JQ2</scope></search><sort><creationdate>20131101</creationdate><title>Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints</title><author>Kulik, Ariel ; Shachnai, Hadas ; Tamir, Tami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-56142ccfc314cd2c4a040ed6c8153d2da9143d0018094a0c48bca4176ab69b823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>approximation algorithms</topic><topic>Approximations</topic><topic>Expectation-maximization algorithm</topic><topic>generalized assignment problem</topic><topic>knapsack constraints</topic><topic>Knapsack problem</topic><topic>Mathematical functions</topic><topic>maximum coverage</topic><topic>Optimization techniques</topic><topic>Polynomials</topic><topic>randomization</topic><topic>Studies</topic><topic>submodular maximization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulik, Ariel</creatorcontrib><creatorcontrib>Shachnai, Hadas</creatorcontrib><creatorcontrib>Tamir, Tami</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematics of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulik, Ariel</au><au>Shachnai, Hadas</au><au>Tamir, Tami</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints</atitle><jtitle>Mathematics of operations research</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>38</volume><issue>4</issue><spage>729</spage><epage>739</epage><pages>729-739</pages><issn>0364-765X</issn><eissn>1526-5471</eissn><coden>MOREDQ</coden><abstract>Submodular maximization generalizes many fundamental problems in discrete optimization, including Max-Cut in directed/undirected graphs, maximum coverage, maximum facility location, and marketing over social networks. In this paper we consider the problem of maximizing any submodular function subject to d knapsack constraints, where d is a fixed constant. We establish a strong relation between the discrete problem and its continuous relaxation, obtained through extension by expectation of the submodular function. Formally, we show that, for any nonnegative submodular function, an α -approximation algorithm for the continuous relaxation implies a randomized ( α − )-approximation algorithm for the discrete problem. We use this relation to obtain an ( e −1 − )-approximation for the problem, and a nearly optimal (1 − e −1 − )-approximation ratio for the monotone case, for any &gt; 0. We further show that the probabilistic domain defined by a continuous solution can be reduced to yield a polynomial-size domain, given an oracle for the extension by expectation. This leads to a deterministic version of our technique.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/moor.2013.0592</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0364-765X
ispartof Mathematics of operations research, 2013-11, Vol.38 (4), p.729-739
issn 0364-765X
1526-5471
language eng
recordid cdi_gale_infotracmisc_A351429375
source Informs; JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing
subjects Analysis
approximation algorithms
Approximations
Expectation-maximization algorithm
generalized assignment problem
knapsack constraints
Knapsack problem
Mathematical functions
maximum coverage
Optimization techniques
Polynomials
randomization
Studies
submodular maximization
title Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximations%20for%20Monotone%20and%20Nonmonotone%20Submodular%20Maximization%20with%20Knapsack%20Constraints&rft.jtitle=Mathematics%20of%20operations%20research&rft.au=Kulik,%20Ariel&rft.date=2013-11-01&rft.volume=38&rft.issue=4&rft.spage=729&rft.epage=739&rft.pages=729-739&rft.issn=0364-765X&rft.eissn=1526-5471&rft.coden=MOREDQ&rft_id=info:doi/10.1287/moor.2013.0592&rft_dat=%3Cgale_cross%3EA351429375%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464737265&rft_id=info:pmid/&rft_galeid=A351429375&rft_jstor_id=24540880&rfr_iscdi=true