Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints
Submodular maximization generalizes many fundamental problems in discrete optimization, including Max-Cut in directed/undirected graphs, maximum coverage, maximum facility location, and marketing over social networks. In this paper we consider the problem of maximizing any submodular function subjec...
Gespeichert in:
Veröffentlicht in: | Mathematics of operations research 2013-11, Vol.38 (4), p.729-739 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 739 |
---|---|
container_issue | 4 |
container_start_page | 729 |
container_title | Mathematics of operations research |
container_volume | 38 |
creator | Kulik, Ariel Shachnai, Hadas Tamir, Tami |
description | Submodular maximization generalizes many fundamental problems in discrete optimization, including Max-Cut in directed/undirected graphs, maximum coverage, maximum facility location, and marketing over social networks.
In this paper we consider the problem of maximizing any submodular function subject to
d
knapsack constraints, where
d
is a fixed constant. We establish a strong relation between the discrete problem and its continuous relaxation, obtained through
extension by expectation
of the submodular function. Formally, we show that, for any nonnegative submodular function, an
α
-approximation algorithm for the continuous relaxation implies a randomized (
α
−
)-approximation algorithm for the discrete problem. We use this relation to obtain an (
e
−1
−
)-approximation for the problem, and a nearly optimal (1 −
e
−1
−
)-approximation ratio for the monotone case, for any
> 0. We further show that the probabilistic domain defined by a continuous solution can be reduced to yield a polynomial-size domain, given an oracle for the extension by expectation. This leads to a deterministic version of our technique. |
doi_str_mv | 10.1287/moor.2013.0592 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A351429375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A351429375</galeid><jstor_id>24540880</jstor_id><sourcerecordid>A351429375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-56142ccfc314cd2c4a040ed6c8153d2da9143d0018094a0c48bca4176ab69b823</originalsourceid><addsrcrecordid>eNqFkl2LEzEUhoMoWFdvvRMGvBKcmu_MXJbix-Kq4Cp4IyGTyXRTO0nNyeDqrzdjXdZCQQIJyXnekzcnB6HHBC8JbdSLMca0pJiwJRYtvYMWRFBZC67IXbTATPJaSfHlPnoAsMWYCEX4An1d7fcpXvvRZB8DVENM1bsYYo7BVSb01fsYxpv95dSNsZ92pjCmaPyvP6rqh89X1dtg9mDst2pd8uRkfMjwEN0bzA7co7_rGfr86uWn9Zv64sPr8_XqorZC8VwLSTi1drCMcNtTyw3m2PXSNkSwnvamJZz1xXOD2xKzvOms4URJ08m2ayg7Q08Pectbvk8Ost7GKYVypSZccsUUleKW2pid0z4Msdi0owerV0wUCy1TM1WfoDYuuGR2pQqDL8dH_PIEX0bvRm9PCp4dCQqT3XXemAlAn19-PGaf_8N2E_jgoEzgN1cZDpJTXmyKAMkNep_K16afmmA9N4mem0TPTaLnJimCJwfBFnIJ3NCUC46bBt8WY35XGuF_-X4DHJbGug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464737265</pqid></control><display><type>article</type><title>Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints</title><source>Informs</source><source>JSTOR Mathematics & Statistics</source><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Kulik, Ariel ; Shachnai, Hadas ; Tamir, Tami</creator><creatorcontrib>Kulik, Ariel ; Shachnai, Hadas ; Tamir, Tami</creatorcontrib><description>Submodular maximization generalizes many fundamental problems in discrete optimization, including Max-Cut in directed/undirected graphs, maximum coverage, maximum facility location, and marketing over social networks.
In this paper we consider the problem of maximizing any submodular function subject to
d
knapsack constraints, where
d
is a fixed constant. We establish a strong relation between the discrete problem and its continuous relaxation, obtained through
extension by expectation
of the submodular function. Formally, we show that, for any nonnegative submodular function, an
α
-approximation algorithm for the continuous relaxation implies a randomized (
α
−
)-approximation algorithm for the discrete problem. We use this relation to obtain an (
e
−1
−
)-approximation for the problem, and a nearly optimal (1 −
e
−1
−
)-approximation ratio for the monotone case, for any
> 0. We further show that the probabilistic domain defined by a continuous solution can be reduced to yield a polynomial-size domain, given an oracle for the extension by expectation. This leads to a deterministic version of our technique.</description><identifier>ISSN: 0364-765X</identifier><identifier>EISSN: 1526-5471</identifier><identifier>DOI: 10.1287/moor.2013.0592</identifier><identifier>CODEN: MOREDQ</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Analysis ; approximation algorithms ; Approximations ; Expectation-maximization algorithm ; generalized assignment problem ; knapsack constraints ; Knapsack problem ; Mathematical functions ; maximum coverage ; Optimization techniques ; Polynomials ; randomization ; Studies ; submodular maximization</subject><ispartof>Mathematics of operations research, 2013-11, Vol.38 (4), p.729-739</ispartof><rights>Copyright 2013, Institute for Operations Research and the Management Sciences</rights><rights>COPYRIGHT 2013 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Nov 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-56142ccfc314cd2c4a040ed6c8153d2da9143d0018094a0c48bca4176ab69b823</citedby><cites>FETCH-LOGICAL-c574t-56142ccfc314cd2c4a040ed6c8153d2da9143d0018094a0c48bca4176ab69b823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24540880$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/moor.2013.0592$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,832,3692,27924,27925,58017,58021,58250,58254,62616</link.rule.ids></links><search><creatorcontrib>Kulik, Ariel</creatorcontrib><creatorcontrib>Shachnai, Hadas</creatorcontrib><creatorcontrib>Tamir, Tami</creatorcontrib><title>Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints</title><title>Mathematics of operations research</title><description>Submodular maximization generalizes many fundamental problems in discrete optimization, including Max-Cut in directed/undirected graphs, maximum coverage, maximum facility location, and marketing over social networks.
In this paper we consider the problem of maximizing any submodular function subject to
d
knapsack constraints, where
d
is a fixed constant. We establish a strong relation between the discrete problem and its continuous relaxation, obtained through
extension by expectation
of the submodular function. Formally, we show that, for any nonnegative submodular function, an
α
-approximation algorithm for the continuous relaxation implies a randomized (
α
−
)-approximation algorithm for the discrete problem. We use this relation to obtain an (
e
−1
−
)-approximation for the problem, and a nearly optimal (1 −
e
−1
−
)-approximation ratio for the monotone case, for any
> 0. We further show that the probabilistic domain defined by a continuous solution can be reduced to yield a polynomial-size domain, given an oracle for the extension by expectation. This leads to a deterministic version of our technique.</description><subject>Analysis</subject><subject>approximation algorithms</subject><subject>Approximations</subject><subject>Expectation-maximization algorithm</subject><subject>generalized assignment problem</subject><subject>knapsack constraints</subject><subject>Knapsack problem</subject><subject>Mathematical functions</subject><subject>maximum coverage</subject><subject>Optimization techniques</subject><subject>Polynomials</subject><subject>randomization</subject><subject>Studies</subject><subject>submodular maximization</subject><issn>0364-765X</issn><issn>1526-5471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFkl2LEzEUhoMoWFdvvRMGvBKcmu_MXJbix-Kq4Cp4IyGTyXRTO0nNyeDqrzdjXdZCQQIJyXnekzcnB6HHBC8JbdSLMca0pJiwJRYtvYMWRFBZC67IXbTATPJaSfHlPnoAsMWYCEX4An1d7fcpXvvRZB8DVENM1bsYYo7BVSb01fsYxpv95dSNsZ92pjCmaPyvP6rqh89X1dtg9mDst2pd8uRkfMjwEN0bzA7co7_rGfr86uWn9Zv64sPr8_XqorZC8VwLSTi1drCMcNtTyw3m2PXSNkSwnvamJZz1xXOD2xKzvOms4URJ08m2ayg7Q08Pectbvk8Ost7GKYVypSZccsUUleKW2pid0z4Msdi0owerV0wUCy1TM1WfoDYuuGR2pQqDL8dH_PIEX0bvRm9PCp4dCQqT3XXemAlAn19-PGaf_8N2E_jgoEzgN1cZDpJTXmyKAMkNep_K16afmmA9N4mem0TPTaLnJimCJwfBFnIJ3NCUC46bBt8WY35XGuF_-X4DHJbGug</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Kulik, Ariel</creator><creator>Shachnai, Hadas</creator><creator>Tamir, Tami</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>JQ2</scope></search><sort><creationdate>20131101</creationdate><title>Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints</title><author>Kulik, Ariel ; Shachnai, Hadas ; Tamir, Tami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-56142ccfc314cd2c4a040ed6c8153d2da9143d0018094a0c48bca4176ab69b823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>approximation algorithms</topic><topic>Approximations</topic><topic>Expectation-maximization algorithm</topic><topic>generalized assignment problem</topic><topic>knapsack constraints</topic><topic>Knapsack problem</topic><topic>Mathematical functions</topic><topic>maximum coverage</topic><topic>Optimization techniques</topic><topic>Polynomials</topic><topic>randomization</topic><topic>Studies</topic><topic>submodular maximization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulik, Ariel</creatorcontrib><creatorcontrib>Shachnai, Hadas</creatorcontrib><creatorcontrib>Tamir, Tami</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematics of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulik, Ariel</au><au>Shachnai, Hadas</au><au>Tamir, Tami</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints</atitle><jtitle>Mathematics of operations research</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>38</volume><issue>4</issue><spage>729</spage><epage>739</epage><pages>729-739</pages><issn>0364-765X</issn><eissn>1526-5471</eissn><coden>MOREDQ</coden><abstract>Submodular maximization generalizes many fundamental problems in discrete optimization, including Max-Cut in directed/undirected graphs, maximum coverage, maximum facility location, and marketing over social networks.
In this paper we consider the problem of maximizing any submodular function subject to
d
knapsack constraints, where
d
is a fixed constant. We establish a strong relation between the discrete problem and its continuous relaxation, obtained through
extension by expectation
of the submodular function. Formally, we show that, for any nonnegative submodular function, an
α
-approximation algorithm for the continuous relaxation implies a randomized (
α
−
)-approximation algorithm for the discrete problem. We use this relation to obtain an (
e
−1
−
)-approximation for the problem, and a nearly optimal (1 −
e
−1
−
)-approximation ratio for the monotone case, for any
> 0. We further show that the probabilistic domain defined by a continuous solution can be reduced to yield a polynomial-size domain, given an oracle for the extension by expectation. This leads to a deterministic version of our technique.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/moor.2013.0592</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-765X |
ispartof | Mathematics of operations research, 2013-11, Vol.38 (4), p.729-739 |
issn | 0364-765X 1526-5471 |
language | eng |
recordid | cdi_gale_infotracmisc_A351429375 |
source | Informs; JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing |
subjects | Analysis approximation algorithms Approximations Expectation-maximization algorithm generalized assignment problem knapsack constraints Knapsack problem Mathematical functions maximum coverage Optimization techniques Polynomials randomization Studies submodular maximization |
title | Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximations%20for%20Monotone%20and%20Nonmonotone%20Submodular%20Maximization%20with%20Knapsack%20Constraints&rft.jtitle=Mathematics%20of%20operations%20research&rft.au=Kulik,%20Ariel&rft.date=2013-11-01&rft.volume=38&rft.issue=4&rft.spage=729&rft.epage=739&rft.pages=729-739&rft.issn=0364-765X&rft.eissn=1526-5471&rft.coden=MOREDQ&rft_id=info:doi/10.1287/moor.2013.0592&rft_dat=%3Cgale_cross%3EA351429375%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464737265&rft_id=info:pmid/&rft_galeid=A351429375&rft_jstor_id=24540880&rfr_iscdi=true |