Algorithmic and structural aspects of the -Radon number
The generalization of classical results about convex sets in [R.sup.n] to abstract convexity spaces, defined by sets of paths in graphs, leads to many challenging structural and algorithmic problems. Here we study the Radon number for the [P.sub.3]-convexity on graphs. [P.sub.3]-convexity has been p...
Gespeichert in:
Veröffentlicht in: | Annals of operations research 2013-07, Vol.206 (1), p.75 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 75 |
container_title | Annals of operations research |
container_volume | 206 |
creator | Dourado, Mitre C Rautenbach, Dieter dos Santos, Vinicius Fernandes Schafer, Philipp M Szwarcfiter, Jayme L Toman, Alexandre |
description | The generalization of classical results about convex sets in [R.sup.n] to abstract convexity spaces, defined by sets of paths in graphs, leads to many challenging structural and algorithmic problems. Here we study the Radon number for the [P.sub.3]-convexity on graphs. [P.sub.3]-convexity has been proposed in connection with rumour and disease spreading processes in networks and the Radon number allows generalizations of Radon's classical convexity result. We establish hardness results and describe efficient algorithms for trees. |
doi_str_mv | 10.1007/s10479-013-1320-9 |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A341456701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A341456701</galeid><sourcerecordid>A341456701</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1041-e86857992e05a90bb6dd11274ca7caa2369a46043e7ce9a96f7a603ac5f707b73</originalsourceid><addsrcrecordid>eNptj81LxDAQxXNQcF39A7wFvJp10nw1x7L4BQuC6HmZpmk30m2lk_7_FvSwggy8gcfvDfMYu5GwkQDuniRo5wVIJaQqQPgztoLCaGGUggt2SfQJAFKWZsVc1XfjlPLhmALHoeGUpznkecKeI33FkImPLc-HyMUbNuPAh_lYx-mKnbfYU7z-3Wv28fjwvn0Wu9enl221E93yhBSxtKVx3hcRDHqoa9s0UhZOB3QBsVDWo7agVXQhevS2dWhBYTCtA1c7tWa3P3c77OM-De2YJwzHRGFfKS21sW7puWabf6hlmrj0GofYpsX_E7g7CdQzpSHSIpS6Q6YOZ6JT_Bu_ZmRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Algorithmic and structural aspects of the -Radon number</title><source>Springer Nature - Complete Springer Journals</source><source>EBSCOhost Business Source Complete</source><creator>Dourado, Mitre C ; Rautenbach, Dieter ; dos Santos, Vinicius Fernandes ; Schafer, Philipp M ; Szwarcfiter, Jayme L ; Toman, Alexandre</creator><creatorcontrib>Dourado, Mitre C ; Rautenbach, Dieter ; dos Santos, Vinicius Fernandes ; Schafer, Philipp M ; Szwarcfiter, Jayme L ; Toman, Alexandre</creatorcontrib><description>The generalization of classical results about convex sets in [R.sup.n] to abstract convexity spaces, defined by sets of paths in graphs, leads to many challenging structural and algorithmic problems. Here we study the Radon number for the [P.sub.3]-convexity on graphs. [P.sub.3]-convexity has been proposed in connection with rumour and disease spreading processes in networks and the Radon number allows generalizations of Radon's classical convexity result. We establish hardness results and describe efficient algorithms for trees.</description><identifier>ISSN: 0254-5330</identifier><identifier>DOI: 10.1007/s10479-013-1320-9</identifier><language>eng</language><publisher>Springer</publisher><subject>Algorithms ; Analysis ; Convex functions</subject><ispartof>Annals of operations research, 2013-07, Vol.206 (1), p.75</ispartof><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dourado, Mitre C</creatorcontrib><creatorcontrib>Rautenbach, Dieter</creatorcontrib><creatorcontrib>dos Santos, Vinicius Fernandes</creatorcontrib><creatorcontrib>Schafer, Philipp M</creatorcontrib><creatorcontrib>Szwarcfiter, Jayme L</creatorcontrib><creatorcontrib>Toman, Alexandre</creatorcontrib><title>Algorithmic and structural aspects of the -Radon number</title><title>Annals of operations research</title><description>The generalization of classical results about convex sets in [R.sup.n] to abstract convexity spaces, defined by sets of paths in graphs, leads to many challenging structural and algorithmic problems. Here we study the Radon number for the [P.sub.3]-convexity on graphs. [P.sub.3]-convexity has been proposed in connection with rumour and disease spreading processes in networks and the Radon number allows generalizations of Radon's classical convexity result. We establish hardness results and describe efficient algorithms for trees.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Convex functions</subject><issn>0254-5330</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNptj81LxDAQxXNQcF39A7wFvJp10nw1x7L4BQuC6HmZpmk30m2lk_7_FvSwggy8gcfvDfMYu5GwkQDuniRo5wVIJaQqQPgztoLCaGGUggt2SfQJAFKWZsVc1XfjlPLhmALHoeGUpznkecKeI33FkImPLc-HyMUbNuPAh_lYx-mKnbfYU7z-3Wv28fjwvn0Wu9enl221E93yhBSxtKVx3hcRDHqoa9s0UhZOB3QBsVDWo7agVXQhevS2dWhBYTCtA1c7tWa3P3c77OM-De2YJwzHRGFfKS21sW7puWabf6hlmrj0GofYpsX_E7g7CdQzpSHSIpS6Q6YOZ6JT_Bu_ZmRk</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Dourado, Mitre C</creator><creator>Rautenbach, Dieter</creator><creator>dos Santos, Vinicius Fernandes</creator><creator>Schafer, Philipp M</creator><creator>Szwarcfiter, Jayme L</creator><creator>Toman, Alexandre</creator><general>Springer</general><scope>N95</scope></search><sort><creationdate>20130701</creationdate><title>Algorithmic and structural aspects of the -Radon number</title><author>Dourado, Mitre C ; Rautenbach, Dieter ; dos Santos, Vinicius Fernandes ; Schafer, Philipp M ; Szwarcfiter, Jayme L ; Toman, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1041-e86857992e05a90bb6dd11274ca7caa2369a46043e7ce9a96f7a603ac5f707b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Convex functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dourado, Mitre C</creatorcontrib><creatorcontrib>Rautenbach, Dieter</creatorcontrib><creatorcontrib>dos Santos, Vinicius Fernandes</creatorcontrib><creatorcontrib>Schafer, Philipp M</creatorcontrib><creatorcontrib>Szwarcfiter, Jayme L</creatorcontrib><creatorcontrib>Toman, Alexandre</creatorcontrib><collection>Gale Business: Insights</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dourado, Mitre C</au><au>Rautenbach, Dieter</au><au>dos Santos, Vinicius Fernandes</au><au>Schafer, Philipp M</au><au>Szwarcfiter, Jayme L</au><au>Toman, Alexandre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithmic and structural aspects of the -Radon number</atitle><jtitle>Annals of operations research</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>206</volume><issue>1</issue><spage>75</spage><pages>75-</pages><issn>0254-5330</issn><abstract>The generalization of classical results about convex sets in [R.sup.n] to abstract convexity spaces, defined by sets of paths in graphs, leads to many challenging structural and algorithmic problems. Here we study the Radon number for the [P.sub.3]-convexity on graphs. [P.sub.3]-convexity has been proposed in connection with rumour and disease spreading processes in networks and the Radon number allows generalizations of Radon's classical convexity result. We establish hardness results and describe efficient algorithms for trees.</abstract><pub>Springer</pub><doi>10.1007/s10479-013-1320-9</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-5330 |
ispartof | Annals of operations research, 2013-07, Vol.206 (1), p.75 |
issn | 0254-5330 |
language | eng |
recordid | cdi_gale_infotracmisc_A341456701 |
source | Springer Nature - Complete Springer Journals; EBSCOhost Business Source Complete |
subjects | Algorithms Analysis Convex functions |
title | Algorithmic and structural aspects of the -Radon number |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithmic%20and%20structural%20aspects%20of%20the%20-Radon%20number&rft.jtitle=Annals%20of%20operations%20research&rft.au=Dourado,%20Mitre%20C&rft.date=2013-07-01&rft.volume=206&rft.issue=1&rft.spage=75&rft.pages=75-&rft.issn=0254-5330&rft_id=info:doi/10.1007/s10479-013-1320-9&rft_dat=%3Cgale%3EA341456701%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A341456701&rfr_iscdi=true |