Algorithmic and structural aspects of the -Radon number

The generalization of classical results about convex sets in [R.sup.n] to abstract convexity spaces, defined by sets of paths in graphs, leads to many challenging structural and algorithmic problems. Here we study the Radon number for the [P.sub.3]-convexity on graphs. [P.sub.3]-convexity has been p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research 2013-07, Vol.206 (1), p.75
Hauptverfasser: Dourado, Mitre C, Rautenbach, Dieter, dos Santos, Vinicius Fernandes, Schafer, Philipp M, Szwarcfiter, Jayme L, Toman, Alexandre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 75
container_title Annals of operations research
container_volume 206
creator Dourado, Mitre C
Rautenbach, Dieter
dos Santos, Vinicius Fernandes
Schafer, Philipp M
Szwarcfiter, Jayme L
Toman, Alexandre
description The generalization of classical results about convex sets in [R.sup.n] to abstract convexity spaces, defined by sets of paths in graphs, leads to many challenging structural and algorithmic problems. Here we study the Radon number for the [P.sub.3]-convexity on graphs. [P.sub.3]-convexity has been proposed in connection with rumour and disease spreading processes in networks and the Radon number allows generalizations of Radon's classical convexity result. We establish hardness results and describe efficient algorithms for trees.
doi_str_mv 10.1007/s10479-013-1320-9
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A341456701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A341456701</galeid><sourcerecordid>A341456701</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1041-e86857992e05a90bb6dd11274ca7caa2369a46043e7ce9a96f7a603ac5f707b73</originalsourceid><addsrcrecordid>eNptj81LxDAQxXNQcF39A7wFvJp10nw1x7L4BQuC6HmZpmk30m2lk_7_FvSwggy8gcfvDfMYu5GwkQDuniRo5wVIJaQqQPgztoLCaGGUggt2SfQJAFKWZsVc1XfjlPLhmALHoeGUpznkecKeI33FkImPLc-HyMUbNuPAh_lYx-mKnbfYU7z-3Wv28fjwvn0Wu9enl221E93yhBSxtKVx3hcRDHqoa9s0UhZOB3QBsVDWo7agVXQhevS2dWhBYTCtA1c7tWa3P3c77OM-De2YJwzHRGFfKS21sW7puWabf6hlmrj0GofYpsX_E7g7CdQzpSHSIpS6Q6YOZ6JT_Bu_ZmRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Algorithmic and structural aspects of the -Radon number</title><source>Springer Nature - Complete Springer Journals</source><source>EBSCOhost Business Source Complete</source><creator>Dourado, Mitre C ; Rautenbach, Dieter ; dos Santos, Vinicius Fernandes ; Schafer, Philipp M ; Szwarcfiter, Jayme L ; Toman, Alexandre</creator><creatorcontrib>Dourado, Mitre C ; Rautenbach, Dieter ; dos Santos, Vinicius Fernandes ; Schafer, Philipp M ; Szwarcfiter, Jayme L ; Toman, Alexandre</creatorcontrib><description>The generalization of classical results about convex sets in [R.sup.n] to abstract convexity spaces, defined by sets of paths in graphs, leads to many challenging structural and algorithmic problems. Here we study the Radon number for the [P.sub.3]-convexity on graphs. [P.sub.3]-convexity has been proposed in connection with rumour and disease spreading processes in networks and the Radon number allows generalizations of Radon's classical convexity result. We establish hardness results and describe efficient algorithms for trees.</description><identifier>ISSN: 0254-5330</identifier><identifier>DOI: 10.1007/s10479-013-1320-9</identifier><language>eng</language><publisher>Springer</publisher><subject>Algorithms ; Analysis ; Convex functions</subject><ispartof>Annals of operations research, 2013-07, Vol.206 (1), p.75</ispartof><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dourado, Mitre C</creatorcontrib><creatorcontrib>Rautenbach, Dieter</creatorcontrib><creatorcontrib>dos Santos, Vinicius Fernandes</creatorcontrib><creatorcontrib>Schafer, Philipp M</creatorcontrib><creatorcontrib>Szwarcfiter, Jayme L</creatorcontrib><creatorcontrib>Toman, Alexandre</creatorcontrib><title>Algorithmic and structural aspects of the -Radon number</title><title>Annals of operations research</title><description>The generalization of classical results about convex sets in [R.sup.n] to abstract convexity spaces, defined by sets of paths in graphs, leads to many challenging structural and algorithmic problems. Here we study the Radon number for the [P.sub.3]-convexity on graphs. [P.sub.3]-convexity has been proposed in connection with rumour and disease spreading processes in networks and the Radon number allows generalizations of Radon's classical convexity result. We establish hardness results and describe efficient algorithms for trees.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Convex functions</subject><issn>0254-5330</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNptj81LxDAQxXNQcF39A7wFvJp10nw1x7L4BQuC6HmZpmk30m2lk_7_FvSwggy8gcfvDfMYu5GwkQDuniRo5wVIJaQqQPgztoLCaGGUggt2SfQJAFKWZsVc1XfjlPLhmALHoeGUpznkecKeI33FkImPLc-HyMUbNuPAh_lYx-mKnbfYU7z-3Wv28fjwvn0Wu9enl221E93yhBSxtKVx3hcRDHqoa9s0UhZOB3QBsVDWo7agVXQhevS2dWhBYTCtA1c7tWa3P3c77OM-De2YJwzHRGFfKS21sW7puWabf6hlmrj0GofYpsX_E7g7CdQzpSHSIpS6Q6YOZ6JT_Bu_ZmRk</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Dourado, Mitre C</creator><creator>Rautenbach, Dieter</creator><creator>dos Santos, Vinicius Fernandes</creator><creator>Schafer, Philipp M</creator><creator>Szwarcfiter, Jayme L</creator><creator>Toman, Alexandre</creator><general>Springer</general><scope>N95</scope></search><sort><creationdate>20130701</creationdate><title>Algorithmic and structural aspects of the -Radon number</title><author>Dourado, Mitre C ; Rautenbach, Dieter ; dos Santos, Vinicius Fernandes ; Schafer, Philipp M ; Szwarcfiter, Jayme L ; Toman, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1041-e86857992e05a90bb6dd11274ca7caa2369a46043e7ce9a96f7a603ac5f707b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Convex functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dourado, Mitre C</creatorcontrib><creatorcontrib>Rautenbach, Dieter</creatorcontrib><creatorcontrib>dos Santos, Vinicius Fernandes</creatorcontrib><creatorcontrib>Schafer, Philipp M</creatorcontrib><creatorcontrib>Szwarcfiter, Jayme L</creatorcontrib><creatorcontrib>Toman, Alexandre</creatorcontrib><collection>Gale Business: Insights</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dourado, Mitre C</au><au>Rautenbach, Dieter</au><au>dos Santos, Vinicius Fernandes</au><au>Schafer, Philipp M</au><au>Szwarcfiter, Jayme L</au><au>Toman, Alexandre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithmic and structural aspects of the -Radon number</atitle><jtitle>Annals of operations research</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>206</volume><issue>1</issue><spage>75</spage><pages>75-</pages><issn>0254-5330</issn><abstract>The generalization of classical results about convex sets in [R.sup.n] to abstract convexity spaces, defined by sets of paths in graphs, leads to many challenging structural and algorithmic problems. Here we study the Radon number for the [P.sub.3]-convexity on graphs. [P.sub.3]-convexity has been proposed in connection with rumour and disease spreading processes in networks and the Radon number allows generalizations of Radon's classical convexity result. We establish hardness results and describe efficient algorithms for trees.</abstract><pub>Springer</pub><doi>10.1007/s10479-013-1320-9</doi></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2013-07, Vol.206 (1), p.75
issn 0254-5330
language eng
recordid cdi_gale_infotracmisc_A341456701
source Springer Nature - Complete Springer Journals; EBSCOhost Business Source Complete
subjects Algorithms
Analysis
Convex functions
title Algorithmic and structural aspects of the -Radon number
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithmic%20and%20structural%20aspects%20of%20the%20-Radon%20number&rft.jtitle=Annals%20of%20operations%20research&rft.au=Dourado,%20Mitre%20C&rft.date=2013-07-01&rft.volume=206&rft.issue=1&rft.spage=75&rft.pages=75-&rft.issn=0254-5330&rft_id=info:doi/10.1007/s10479-013-1320-9&rft_dat=%3Cgale%3EA341456701%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A341456701&rfr_iscdi=true