Influence of infiltration on the periodic re-activation of slow movements in an overconsolidated clay slope

In Orvieto (central Italy), overconsolidated clay slopes are affected by intermittent slow movements at the top of the clay formation and within the landslide debris cover. Monthly data from inclinometers, Casagrande piezometers, and rainfall gauges show that velocity, pore pressure, and rainfall ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian geotechnical journal 2013-01, Vol.50 (1), p.54
Hauptverfasser: Tommasi, Paolo, Boldini, Daniela, Caldarini, Giada, Coli, Niccolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 54
container_title Canadian geotechnical journal
container_volume 50
creator Tommasi, Paolo
Boldini, Daniela
Caldarini, Giada
Coli, Niccolo
description In Orvieto (central Italy), overconsolidated clay slopes are affected by intermittent slow movements at the top of the clay formation and within the landslide debris cover. Monthly data from inclinometers, Casagrande piezometers, and rainfall gauges show that velocity, pore pressure, and rainfall are closely related. A relationship is suggested to predict slope re-activation using rainfall history alone, once a pore pressure threshold has been reached and response of pore pressures to rainfall is understood. Pore pressures have been continuously monitored through vibrating wire cells. The threshold for shallow movements, critical for infrastructures and buildings, was identified by comparing displacement histories of a shallow movement, representative of many other ones recognized over the slope, and pore pressure, both measured at the centre of the sliding mass. The impact of infiltrated rainfall on groundwater flow was investigated through transient seepage analyses. Seepage analyses performed using hydraulic properties from laboratory and in situ tests do not fully depict the observed pore pressures because field data miss some structural characters and lithologic variations. The hydraulic properties of the shallower model layers were refined, based on field observations and interpretation of monitoring data, to have a good match between computed and measured pore pressures. Once the model is tested at different locations along a slope, it could be used to predict movement re-activation using only rainfall data.
doi_str_mv 10.1139/cgj-2012-0121/
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A337072413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A337072413</galeid><sourcerecordid>A337072413</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2003-2a7f7c58d98d607a97ed6fd2581df0fee6d2787a285dd7c3a15138458823b04c3</originalsourceid><addsrcrecordid>eNqV0M1LwzAUAPAgCs7p1XPQk4du-Wib7DiGH4Oh4Me5xOSlZrbNbLqp_70Rd9igF8kLCS-_9-AFoXNKRpTyyViXy4QRypK46fgADSgjMskJJYdoQEi881ykx-gkhCUhNE0ZG6D3eWOrNTQasLfYNdZVXas65xsco3sDvILWeeM0biFRunOb7avFofKfuPYbqKHpQizGKuY30GrfBF85ozowWFfq-5eu4BQdWVUFONueQ_Ryc_08u0sWD7fz2XSRlIwQnjAlrNCZNBNpciLURIDJrWGZpMYSC5AbJqRQTGbGCM0VzSiXaSYl468k1XyILv_6lqqCIs7k40i6dkEXU84FESylPKqkR5XQQKsq30D8Cdj3Fz1er9xHsYtGPSguA7XTvV2v9gqi6eCrK9U6hGL-9PgPe79rfwDZ2KC2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of infiltration on the periodic re-activation of slow movements in an overconsolidated clay slope</title><source>NRC Research Press</source><source>Alma/SFX Local Collection</source><creator>Tommasi, Paolo ; Boldini, Daniela ; Caldarini, Giada ; Coli, Niccolo</creator><creatorcontrib>Tommasi, Paolo ; Boldini, Daniela ; Caldarini, Giada ; Coli, Niccolo</creatorcontrib><description>In Orvieto (central Italy), overconsolidated clay slopes are affected by intermittent slow movements at the top of the clay formation and within the landslide debris cover. Monthly data from inclinometers, Casagrande piezometers, and rainfall gauges show that velocity, pore pressure, and rainfall are closely related. A relationship is suggested to predict slope re-activation using rainfall history alone, once a pore pressure threshold has been reached and response of pore pressures to rainfall is understood. Pore pressures have been continuously monitored through vibrating wire cells. The threshold for shallow movements, critical for infrastructures and buildings, was identified by comparing displacement histories of a shallow movement, representative of many other ones recognized over the slope, and pore pressure, both measured at the centre of the sliding mass. The impact of infiltrated rainfall on groundwater flow was investigated through transient seepage analyses. Seepage analyses performed using hydraulic properties from laboratory and in situ tests do not fully depict the observed pore pressures because field data miss some structural characters and lithologic variations. The hydraulic properties of the shallower model layers were refined, based on field observations and interpretation of monitoring data, to have a good match between computed and measured pore pressures. Once the model is tested at different locations along a slope, it could be used to predict movement re-activation using only rainfall data.</description><identifier>ISSN: 0008-3674</identifier><identifier>EISSN: 1208-6010</identifier><identifier>DOI: 10.1139/cgj-2012-0121/</identifier><language>eng</language><publisher>NRC Research Press</publisher><subject>Clay ; Environmental aspects ; Infiltration (Hydrology) ; Mechanical properties ; Slopes (Physical geography)</subject><ispartof>Canadian geotechnical journal, 2013-01, Vol.50 (1), p.54</ispartof><rights>COPYRIGHT 2013 NRC Research Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tommasi, Paolo</creatorcontrib><creatorcontrib>Boldini, Daniela</creatorcontrib><creatorcontrib>Caldarini, Giada</creatorcontrib><creatorcontrib>Coli, Niccolo</creatorcontrib><title>Influence of infiltration on the periodic re-activation of slow movements in an overconsolidated clay slope</title><title>Canadian geotechnical journal</title><description>In Orvieto (central Italy), overconsolidated clay slopes are affected by intermittent slow movements at the top of the clay formation and within the landslide debris cover. Monthly data from inclinometers, Casagrande piezometers, and rainfall gauges show that velocity, pore pressure, and rainfall are closely related. A relationship is suggested to predict slope re-activation using rainfall history alone, once a pore pressure threshold has been reached and response of pore pressures to rainfall is understood. Pore pressures have been continuously monitored through vibrating wire cells. The threshold for shallow movements, critical for infrastructures and buildings, was identified by comparing displacement histories of a shallow movement, representative of many other ones recognized over the slope, and pore pressure, both measured at the centre of the sliding mass. The impact of infiltrated rainfall on groundwater flow was investigated through transient seepage analyses. Seepage analyses performed using hydraulic properties from laboratory and in situ tests do not fully depict the observed pore pressures because field data miss some structural characters and lithologic variations. The hydraulic properties of the shallower model layers were refined, based on field observations and interpretation of monitoring data, to have a good match between computed and measured pore pressures. Once the model is tested at different locations along a slope, it could be used to predict movement re-activation using only rainfall data.</description><subject>Clay</subject><subject>Environmental aspects</subject><subject>Infiltration (Hydrology)</subject><subject>Mechanical properties</subject><subject>Slopes (Physical geography)</subject><issn>0008-3674</issn><issn>1208-6010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqV0M1LwzAUAPAgCs7p1XPQk4du-Wib7DiGH4Oh4Me5xOSlZrbNbLqp_70Rd9igF8kLCS-_9-AFoXNKRpTyyViXy4QRypK46fgADSgjMskJJYdoQEi881ykx-gkhCUhNE0ZG6D3eWOrNTQasLfYNdZVXas65xsco3sDvILWeeM0biFRunOb7avFofKfuPYbqKHpQizGKuY30GrfBF85ozowWFfq-5eu4BQdWVUFONueQ_Ryc_08u0sWD7fz2XSRlIwQnjAlrNCZNBNpciLURIDJrWGZpMYSC5AbJqRQTGbGCM0VzSiXaSYl468k1XyILv_6lqqCIs7k40i6dkEXU84FESylPKqkR5XQQKsq30D8Cdj3Fz1er9xHsYtGPSguA7XTvV2v9gqi6eCrK9U6hGL-9PgPe79rfwDZ2KC2</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Tommasi, Paolo</creator><creator>Boldini, Daniela</creator><creator>Caldarini, Giada</creator><creator>Coli, Niccolo</creator><general>NRC Research Press</general><scope>ISN</scope><scope>ISR</scope></search><sort><creationdate>20130101</creationdate><title>Influence of infiltration on the periodic re-activation of slow movements in an overconsolidated clay slope</title><author>Tommasi, Paolo ; Boldini, Daniela ; Caldarini, Giada ; Coli, Niccolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2003-2a7f7c58d98d607a97ed6fd2581df0fee6d2787a285dd7c3a15138458823b04c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Clay</topic><topic>Environmental aspects</topic><topic>Infiltration (Hydrology)</topic><topic>Mechanical properties</topic><topic>Slopes (Physical geography)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tommasi, Paolo</creatorcontrib><creatorcontrib>Boldini, Daniela</creatorcontrib><creatorcontrib>Caldarini, Giada</creatorcontrib><creatorcontrib>Coli, Niccolo</creatorcontrib><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><jtitle>Canadian geotechnical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tommasi, Paolo</au><au>Boldini, Daniela</au><au>Caldarini, Giada</au><au>Coli, Niccolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of infiltration on the periodic re-activation of slow movements in an overconsolidated clay slope</atitle><jtitle>Canadian geotechnical journal</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>50</volume><issue>1</issue><spage>54</spage><pages>54-</pages><issn>0008-3674</issn><eissn>1208-6010</eissn><abstract>In Orvieto (central Italy), overconsolidated clay slopes are affected by intermittent slow movements at the top of the clay formation and within the landslide debris cover. Monthly data from inclinometers, Casagrande piezometers, and rainfall gauges show that velocity, pore pressure, and rainfall are closely related. A relationship is suggested to predict slope re-activation using rainfall history alone, once a pore pressure threshold has been reached and response of pore pressures to rainfall is understood. Pore pressures have been continuously monitored through vibrating wire cells. The threshold for shallow movements, critical for infrastructures and buildings, was identified by comparing displacement histories of a shallow movement, representative of many other ones recognized over the slope, and pore pressure, both measured at the centre of the sliding mass. The impact of infiltrated rainfall on groundwater flow was investigated through transient seepage analyses. Seepage analyses performed using hydraulic properties from laboratory and in situ tests do not fully depict the observed pore pressures because field data miss some structural characters and lithologic variations. The hydraulic properties of the shallower model layers were refined, based on field observations and interpretation of monitoring data, to have a good match between computed and measured pore pressures. Once the model is tested at different locations along a slope, it could be used to predict movement re-activation using only rainfall data.</abstract><pub>NRC Research Press</pub><doi>10.1139/cgj-2012-0121/</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-3674
ispartof Canadian geotechnical journal, 2013-01, Vol.50 (1), p.54
issn 0008-3674
1208-6010
language eng
recordid cdi_gale_infotracmisc_A337072413
source NRC Research Press; Alma/SFX Local Collection
subjects Clay
Environmental aspects
Infiltration (Hydrology)
Mechanical properties
Slopes (Physical geography)
title Influence of infiltration on the periodic re-activation of slow movements in an overconsolidated clay slope
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A23%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20infiltration%20on%20the%20periodic%20re-activation%20of%20slow%20movements%20in%20an%20overconsolidated%20clay%20slope&rft.jtitle=Canadian%20geotechnical%20journal&rft.au=Tommasi,%20Paolo&rft.date=2013-01-01&rft.volume=50&rft.issue=1&rft.spage=54&rft.pages=54-&rft.issn=0008-3674&rft.eissn=1208-6010&rft_id=info:doi/10.1139/cgj-2012-0121/&rft_dat=%3Cgale%3EA337072413%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A337072413&rfr_iscdi=true