Supercontinent cycles and the calculation of absolute palaeolongitude in deep time

Traditional models of the supercontinent cycle predict that the next supercontinent--'Amasia'--will form either where Pangaea rifted (the 'introversion'1 model) or on the opposite side of the world (the 'extroversion' (2-4) models). Here, by contrast, we develop an ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2012-02, Vol.482 (7384), p.208
Hauptverfasser: Mitchell, Ross N, Kilian, Taylor M, Evans, David A.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7384
container_start_page 208
container_title Nature (London)
container_volume 482
creator Mitchell, Ross N
Kilian, Taylor M
Evans, David A.D
description Traditional models of the supercontinent cycle predict that the next supercontinent--'Amasia'--will form either where Pangaea rifted (the 'introversion'1 model) or on the opposite side of the world (the 'extroversion' (2-4) models). Here, by contrast, we develop an 'orthoversion' (5) model whereby a succeeding supercontinent forms 90° away, within the great circle of subduction encircling its relict predecessor. A supercontinent aggregates over a mantle downwelling but then influences global-scale mantle convection to create an upwelling under the landmass (6). We calculate the minimum moment of inertia about which oscillatory true polar wander occurs owing to the prolate shape of the non-hydrostatic Earth (5,7).By fitting great circles to each supercontinent's true polar wander legacy, we determine that the arc distances between successive supercontinent centres (the axes of the respective minimum moments of inertia) are 88° for Nuna to Rodinia and 87° for Rodinia to Pangaea--as predicted by the orthoversion model. Supercontinent centres can be located back into Precambrian time, providing fixed points for the calculation of absolute palaeolongitude over billion-year timescales. Palaeogeographic reconstructions additionally constrained in palaeolongitude will provide increasingly accurate estimates of ancient plate motions and palaeobiogeographic affinities.
doi_str_mv 10.1038/naturel0800
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A280717709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A280717709</galeid><sourcerecordid>A280717709</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1669-8d1ea88abcf94a1d478034e80a2ea79b7ef040c7b257d50a12d881fe54e0a2d3</originalsourceid><addsrcrecordid>eNpt0E1Lw0AQBuBFFKzVk39g0ZOH1Nl87fZYih-FgtD2Hia7k7iy3cRmA_rvjeihhTCHgeGZl2EYuxUwE5CoR4-hP5ADBXDGJiKVeZTmSp6zCUCsIlBJfsmuuu4DADIh0wnbbPuWDrrxwXrygetv7ajj6A0P78Q1Ot07DLbxvKk4ll3j-kC8RYfUuMbXNvSGuPXcELU82D1ds4sKXUc3_33Kds9Pu-VrtH57WS0X66gWeT6PlBGESmGpq3mKwqRSQZKSAowJ5byUVEEKWpZxJk0GKGKjlKgoS2kgJpmy-7_YGh0V1ldNOKDe204Xi1iBFFLCfFDRiKrJ0wGH86myw_jE34143drP4hjNRtBQhvZWj6Y-nCz8_pu-Qo191xWr7ebY_gAVaoq5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Supercontinent cycles and the calculation of absolute palaeolongitude in deep time</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Mitchell, Ross N ; Kilian, Taylor M ; Evans, David A.D</creator><creatorcontrib>Mitchell, Ross N ; Kilian, Taylor M ; Evans, David A.D</creatorcontrib><description>Traditional models of the supercontinent cycle predict that the next supercontinent--'Amasia'--will form either where Pangaea rifted (the 'introversion'1 model) or on the opposite side of the world (the 'extroversion' (2-4) models). Here, by contrast, we develop an 'orthoversion' (5) model whereby a succeeding supercontinent forms 90° away, within the great circle of subduction encircling its relict predecessor. A supercontinent aggregates over a mantle downwelling but then influences global-scale mantle convection to create an upwelling under the landmass (6). We calculate the minimum moment of inertia about which oscillatory true polar wander occurs owing to the prolate shape of the non-hydrostatic Earth (5,7).By fitting great circles to each supercontinent's true polar wander legacy, we determine that the arc distances between successive supercontinent centres (the axes of the respective minimum moments of inertia) are 88° for Nuna to Rodinia and 87° for Rodinia to Pangaea--as predicted by the orthoversion model. Supercontinent centres can be located back into Precambrian time, providing fixed points for the calculation of absolute palaeolongitude over billion-year timescales. Palaeogeographic reconstructions additionally constrained in palaeolongitude will provide increasingly accurate estimates of ancient plate motions and palaeobiogeographic affinities.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/naturel0800</identifier><language>eng</language><publisher>Nature Publishing Group</publisher><subject>Continents ; Ocean</subject><ispartof>Nature (London), 2012-02, Vol.482 (7384), p.208</ispartof><rights>COPYRIGHT 2012 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mitchell, Ross N</creatorcontrib><creatorcontrib>Kilian, Taylor M</creatorcontrib><creatorcontrib>Evans, David A.D</creatorcontrib><title>Supercontinent cycles and the calculation of absolute palaeolongitude in deep time</title><title>Nature (London)</title><description>Traditional models of the supercontinent cycle predict that the next supercontinent--'Amasia'--will form either where Pangaea rifted (the 'introversion'1 model) or on the opposite side of the world (the 'extroversion' (2-4) models). Here, by contrast, we develop an 'orthoversion' (5) model whereby a succeeding supercontinent forms 90° away, within the great circle of subduction encircling its relict predecessor. A supercontinent aggregates over a mantle downwelling but then influences global-scale mantle convection to create an upwelling under the landmass (6). We calculate the minimum moment of inertia about which oscillatory true polar wander occurs owing to the prolate shape of the non-hydrostatic Earth (5,7).By fitting great circles to each supercontinent's true polar wander legacy, we determine that the arc distances between successive supercontinent centres (the axes of the respective minimum moments of inertia) are 88° for Nuna to Rodinia and 87° for Rodinia to Pangaea--as predicted by the orthoversion model. Supercontinent centres can be located back into Precambrian time, providing fixed points for the calculation of absolute palaeolongitude over billion-year timescales. Palaeogeographic reconstructions additionally constrained in palaeolongitude will provide increasingly accurate estimates of ancient plate motions and palaeobiogeographic affinities.</description><subject>Continents</subject><subject>Ocean</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpt0E1Lw0AQBuBFFKzVk39g0ZOH1Nl87fZYih-FgtD2Hia7k7iy3cRmA_rvjeihhTCHgeGZl2EYuxUwE5CoR4-hP5ADBXDGJiKVeZTmSp6zCUCsIlBJfsmuuu4DADIh0wnbbPuWDrrxwXrygetv7ajj6A0P78Q1Ot07DLbxvKk4ll3j-kC8RYfUuMbXNvSGuPXcELU82D1ds4sKXUc3_33Kds9Pu-VrtH57WS0X66gWeT6PlBGESmGpq3mKwqRSQZKSAowJ5byUVEEKWpZxJk0GKGKjlKgoS2kgJpmy-7_YGh0V1ldNOKDe204Xi1iBFFLCfFDRiKrJ0wGH86myw_jE34143drP4hjNRtBQhvZWj6Y-nCz8_pu-Qo191xWr7ebY_gAVaoq5</recordid><startdate>20120209</startdate><enddate>20120209</enddate><creator>Mitchell, Ross N</creator><creator>Kilian, Taylor M</creator><creator>Evans, David A.D</creator><general>Nature Publishing Group</general><scope/></search><sort><creationdate>20120209</creationdate><title>Supercontinent cycles and the calculation of absolute palaeolongitude in deep time</title><author>Mitchell, Ross N ; Kilian, Taylor M ; Evans, David A.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1669-8d1ea88abcf94a1d478034e80a2ea79b7ef040c7b257d50a12d881fe54e0a2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Continents</topic><topic>Ocean</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitchell, Ross N</creatorcontrib><creatorcontrib>Kilian, Taylor M</creatorcontrib><creatorcontrib>Evans, David A.D</creatorcontrib><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitchell, Ross N</au><au>Kilian, Taylor M</au><au>Evans, David A.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supercontinent cycles and the calculation of absolute palaeolongitude in deep time</atitle><jtitle>Nature (London)</jtitle><date>2012-02-09</date><risdate>2012</risdate><volume>482</volume><issue>7384</issue><spage>208</spage><pages>208-</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Traditional models of the supercontinent cycle predict that the next supercontinent--'Amasia'--will form either where Pangaea rifted (the 'introversion'1 model) or on the opposite side of the world (the 'extroversion' (2-4) models). Here, by contrast, we develop an 'orthoversion' (5) model whereby a succeeding supercontinent forms 90° away, within the great circle of subduction encircling its relict predecessor. A supercontinent aggregates over a mantle downwelling but then influences global-scale mantle convection to create an upwelling under the landmass (6). We calculate the minimum moment of inertia about which oscillatory true polar wander occurs owing to the prolate shape of the non-hydrostatic Earth (5,7).By fitting great circles to each supercontinent's true polar wander legacy, we determine that the arc distances between successive supercontinent centres (the axes of the respective minimum moments of inertia) are 88° for Nuna to Rodinia and 87° for Rodinia to Pangaea--as predicted by the orthoversion model. Supercontinent centres can be located back into Precambrian time, providing fixed points for the calculation of absolute palaeolongitude over billion-year timescales. Palaeogeographic reconstructions additionally constrained in palaeolongitude will provide increasingly accurate estimates of ancient plate motions and palaeobiogeographic affinities.</abstract><pub>Nature Publishing Group</pub><doi>10.1038/naturel0800</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2012-02, Vol.482 (7384), p.208
issn 0028-0836
1476-4687
language eng
recordid cdi_gale_infotracmisc_A280717709
source Nature; Alma/SFX Local Collection
subjects Continents
Ocean
title Supercontinent cycles and the calculation of absolute palaeolongitude in deep time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A02%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supercontinent%20cycles%20and%20the%20calculation%20of%20absolute%20palaeolongitude%20in%20deep%20time&rft.jtitle=Nature%20(London)&rft.au=Mitchell,%20Ross%20N&rft.date=2012-02-09&rft.volume=482&rft.issue=7384&rft.spage=208&rft.pages=208-&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/naturel0800&rft_dat=%3Cgale%3EA280717709%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A280717709&rfr_iscdi=true