Montmorillonite nanoclay filler effects on electrical conductivity, thermal and mechanical properties of epoxy-based nanocomposites
Epoxy‐based nanocomposites with 2, 5, and 7 wt% of montmorillonite (MMT) nanoclay were prepared using high shear melt mixing technique. The microstructural features of the nanocomposites were investigated by transmission electron microscopy (TEM). The thermal and mechanical properties were measured...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 2011-09, Vol.51 (9), p.1827-1836 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1836 |
---|---|
container_issue | 9 |
container_start_page | 1827 |
container_title | Polymer engineering and science |
container_volume | 51 |
creator | Rashmi Renukappa, N.M. Chikkakuntappa, Ranganathaiah Kunigal, N. Shivakumar |
description | Epoxy‐based nanocomposites with 2, 5, and 7 wt% of montmorillonite (MMT) nanoclay were prepared using high shear melt mixing technique. The microstructural features of the nanocomposites were investigated by transmission electron microscopy (TEM). The thermal and mechanical properties were measured using differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA), and dynamic mechanical analyzer (DMA). Further, the effect of voltage, temperature, seawater aging on the electrical conductivity (σDC) of the nanocomposites was also measured. To understand the free volume behavior upon filler loading, and to observe the connectivity between microstructure and other properties, positron annihilation lifetime spectroscopy was used. The TEM results revealed that MMT nanoparticles were uniformly dispersed in the epoxy matrix. Experimental results showed that the inclusion of 2 wt% MMT nanofiller increased the Tg, electrical conductivity, thermal stability, modulus, free volume of the epoxy nanocomposite significantly. This is well explained from the results of Tg (DSC and DMA), thermal stability, TGA residue, free volume analysis, and electrical conductivity. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers |
doi_str_mv | 10.1002/pen.21974 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A266141569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A266141569</galeid><sourcerecordid>A266141569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5504-4db94b0a7841241a8b15331d865afbd62bd8152bc16e264e70538d6736167edc3</originalsourceid><addsrcrecordid>eNp1kl1rFDEUhgdRcK1e-A8GxAuhs833zF6Wpa2FWsUqehcyyZnd6EwyJFntXPvHjZ1aXFgJJOHwvO_hfBTFS4yWGCFyMoJbEryq2aNigTlrKiIoe1wsEKKkok3TPC2exfgNZZby1aL49c67NPhg-947m6B0ynndq6nscghCCV0HOsXSuxL6_AtWq77U3pmdTvaHTdNxmbYQhhxVzpQD6K1yd9AY_AghWcjqroTR305VqyKYOYkfRh9zyvi8eNKpPsKL-_eo-Hx-9mn9trp6f3G5Pr2qNOeIVcy0K9YiVTcME4ZV02JOKTaN4KprjSCtaTAnrcYCiGBQI04bI2oqsKjBaHpUvJp9N6oHaV3nU1B6sFHLUyIEZpiLVaaqA9QGHASVewS5L7DPLw_w-RgYrD4oeLMnyEyC27RRuxjl5c3Hffb4H7bdResg5ivazTbFWXLIWgcfY4BOjsEOKkwSI_lnP2TeD3m3H5l9PbOjinlaXVBO2_ggIIwxjDnK3MnM_cx1TP83lB_Orv8633fQxlzYg0KF7zJPo-byy_WFXNeCfb0hK0npbzXp2Ds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Montmorillonite nanoclay filler effects on electrical conductivity, thermal and mechanical properties of epoxy-based nanocomposites</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rashmi ; Renukappa, N.M. ; Chikkakuntappa, Ranganathaiah ; Kunigal, N. Shivakumar</creator><creatorcontrib>Rashmi ; Renukappa, N.M. ; Chikkakuntappa, Ranganathaiah ; Kunigal, N. Shivakumar</creatorcontrib><description>Epoxy‐based nanocomposites with 2, 5, and 7 wt% of montmorillonite (MMT) nanoclay were prepared using high shear melt mixing technique. The microstructural features of the nanocomposites were investigated by transmission electron microscopy (TEM). The thermal and mechanical properties were measured using differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA), and dynamic mechanical analyzer (DMA). Further, the effect of voltage, temperature, seawater aging on the electrical conductivity (σDC) of the nanocomposites was also measured. To understand the free volume behavior upon filler loading, and to observe the connectivity between microstructure and other properties, positron annihilation lifetime spectroscopy was used. The TEM results revealed that MMT nanoparticles were uniformly dispersed in the epoxy matrix. Experimental results showed that the inclusion of 2 wt% MMT nanofiller increased the Tg, electrical conductivity, thermal stability, modulus, free volume of the epoxy nanocomposite significantly. This is well explained from the results of Tg (DSC and DMA), thermal stability, TGA residue, free volume analysis, and electrical conductivity. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.21974</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Composite materials ; Composites ; Electric properties ; Electrical conductivity ; Epoxy resins ; Exact sciences and technology ; Fillers (Materials) ; Forms of application and semi-finished materials ; Materials ; Mechanical properties ; Montmorillonite ; Polymer industry, paints, wood ; Technology application ; Technology of polymers ; Thermal properties</subject><ispartof>Polymer engineering and science, 2011-09, Vol.51 (9), p.1827-1836</ispartof><rights>Copyright © 2011 Society of Plastics Engineers</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Society of Plastics Engineers, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5504-4db94b0a7841241a8b15331d865afbd62bd8152bc16e264e70538d6736167edc3</citedby><cites>FETCH-LOGICAL-c5504-4db94b0a7841241a8b15331d865afbd62bd8152bc16e264e70538d6736167edc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.21974$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.21974$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24441150$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rashmi</creatorcontrib><creatorcontrib>Renukappa, N.M.</creatorcontrib><creatorcontrib>Chikkakuntappa, Ranganathaiah</creatorcontrib><creatorcontrib>Kunigal, N. Shivakumar</creatorcontrib><title>Montmorillonite nanoclay filler effects on electrical conductivity, thermal and mechanical properties of epoxy-based nanocomposites</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>Epoxy‐based nanocomposites with 2, 5, and 7 wt% of montmorillonite (MMT) nanoclay were prepared using high shear melt mixing technique. The microstructural features of the nanocomposites were investigated by transmission electron microscopy (TEM). The thermal and mechanical properties were measured using differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA), and dynamic mechanical analyzer (DMA). Further, the effect of voltage, temperature, seawater aging on the electrical conductivity (σDC) of the nanocomposites was also measured. To understand the free volume behavior upon filler loading, and to observe the connectivity between microstructure and other properties, positron annihilation lifetime spectroscopy was used. The TEM results revealed that MMT nanoparticles were uniformly dispersed in the epoxy matrix. Experimental results showed that the inclusion of 2 wt% MMT nanofiller increased the Tg, electrical conductivity, thermal stability, modulus, free volume of the epoxy nanocomposite significantly. This is well explained from the results of Tg (DSC and DMA), thermal stability, TGA residue, free volume analysis, and electrical conductivity. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers</description><subject>Applied sciences</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Epoxy resins</subject><subject>Exact sciences and technology</subject><subject>Fillers (Materials)</subject><subject>Forms of application and semi-finished materials</subject><subject>Materials</subject><subject>Mechanical properties</subject><subject>Montmorillonite</subject><subject>Polymer industry, paints, wood</subject><subject>Technology application</subject><subject>Technology of polymers</subject><subject>Thermal properties</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kl1rFDEUhgdRcK1e-A8GxAuhs833zF6Wpa2FWsUqehcyyZnd6EwyJFntXPvHjZ1aXFgJJOHwvO_hfBTFS4yWGCFyMoJbEryq2aNigTlrKiIoe1wsEKKkok3TPC2exfgNZZby1aL49c67NPhg-947m6B0ynndq6nscghCCV0HOsXSuxL6_AtWq77U3pmdTvaHTdNxmbYQhhxVzpQD6K1yd9AY_AghWcjqroTR305VqyKYOYkfRh9zyvi8eNKpPsKL-_eo-Hx-9mn9trp6f3G5Pr2qNOeIVcy0K9YiVTcME4ZV02JOKTaN4KprjSCtaTAnrcYCiGBQI04bI2oqsKjBaHpUvJp9N6oHaV3nU1B6sFHLUyIEZpiLVaaqA9QGHASVewS5L7DPLw_w-RgYrD4oeLMnyEyC27RRuxjl5c3Hffb4H7bdResg5ivazTbFWXLIWgcfY4BOjsEOKkwSI_lnP2TeD3m3H5l9PbOjinlaXVBO2_ggIIwxjDnK3MnM_cx1TP83lB_Orv8633fQxlzYg0KF7zJPo-byy_WFXNeCfb0hK0npbzXp2Ds</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Rashmi</creator><creator>Renukappa, N.M.</creator><creator>Chikkakuntappa, Ranganathaiah</creator><creator>Kunigal, N. Shivakumar</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Society of Plastics Engineers, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope></search><sort><creationdate>201109</creationdate><title>Montmorillonite nanoclay filler effects on electrical conductivity, thermal and mechanical properties of epoxy-based nanocomposites</title><author>Rashmi ; Renukappa, N.M. ; Chikkakuntappa, Ranganathaiah ; Kunigal, N. Shivakumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5504-4db94b0a7841241a8b15331d865afbd62bd8152bc16e264e70538d6736167edc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Epoxy resins</topic><topic>Exact sciences and technology</topic><topic>Fillers (Materials)</topic><topic>Forms of application and semi-finished materials</topic><topic>Materials</topic><topic>Mechanical properties</topic><topic>Montmorillonite</topic><topic>Polymer industry, paints, wood</topic><topic>Technology application</topic><topic>Technology of polymers</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rashmi</creatorcontrib><creatorcontrib>Renukappa, N.M.</creatorcontrib><creatorcontrib>Chikkakuntappa, Ranganathaiah</creatorcontrib><creatorcontrib>Kunigal, N. Shivakumar</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rashmi</au><au>Renukappa, N.M.</au><au>Chikkakuntappa, Ranganathaiah</au><au>Kunigal, N. Shivakumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Montmorillonite nanoclay filler effects on electrical conductivity, thermal and mechanical properties of epoxy-based nanocomposites</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2011-09</date><risdate>2011</risdate><volume>51</volume><issue>9</issue><spage>1827</spage><epage>1836</epage><pages>1827-1836</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>Epoxy‐based nanocomposites with 2, 5, and 7 wt% of montmorillonite (MMT) nanoclay were prepared using high shear melt mixing technique. The microstructural features of the nanocomposites were investigated by transmission electron microscopy (TEM). The thermal and mechanical properties were measured using differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA), and dynamic mechanical analyzer (DMA). Further, the effect of voltage, temperature, seawater aging on the electrical conductivity (σDC) of the nanocomposites was also measured. To understand the free volume behavior upon filler loading, and to observe the connectivity between microstructure and other properties, positron annihilation lifetime spectroscopy was used. The TEM results revealed that MMT nanoparticles were uniformly dispersed in the epoxy matrix. Experimental results showed that the inclusion of 2 wt% MMT nanofiller increased the Tg, electrical conductivity, thermal stability, modulus, free volume of the epoxy nanocomposite significantly. This is well explained from the results of Tg (DSC and DMA), thermal stability, TGA residue, free volume analysis, and electrical conductivity. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pen.21974</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2011-09, Vol.51 (9), p.1827-1836 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_gale_infotracmisc_A266141569 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Composite materials Composites Electric properties Electrical conductivity Epoxy resins Exact sciences and technology Fillers (Materials) Forms of application and semi-finished materials Materials Mechanical properties Montmorillonite Polymer industry, paints, wood Technology application Technology of polymers Thermal properties |
title | Montmorillonite nanoclay filler effects on electrical conductivity, thermal and mechanical properties of epoxy-based nanocomposites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A53%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Montmorillonite%20nanoclay%20filler%20effects%20on%20electrical%20conductivity,%20thermal%20and%20mechanical%20properties%20of%20epoxy-based%20nanocomposites&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Rashmi&rft.date=2011-09&rft.volume=51&rft.issue=9&rft.spage=1827&rft.epage=1836&rft.pages=1827-1836&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.21974&rft_dat=%3Cgale_cross%3EA266141569%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A266141569&rfr_iscdi=true |