The Evolution of Internal Market Structure
We present a dynamic factor-analytic choice model to capture evolution of brand positions in latent attribute space. Our dynamic model allows researchers to investigate brand positioning in new categories or mature categories affected by structural change such as entry. We argue that even for mature...
Gespeichert in:
Veröffentlicht in: | Marketing science (Providence, R.I.) R.I.), 2011-03, Vol.30 (2), p.274-289 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 289 |
---|---|
container_issue | 2 |
container_start_page | 274 |
container_title | Marketing science (Providence, R.I.) |
container_volume | 30 |
creator | Rutz, Oliver J. Sonnier, Garrett P. |
description | We present a dynamic factor-analytic choice model to capture evolution of brand positions in latent attribute space. Our dynamic model allows researchers to investigate brand positioning in new categories or mature categories affected by structural change such as entry. We argue that even for mature categories not affected by structural change, the assumption of stable attributes may be untenable. We allow for evolution in attributes by modeling individual-level time-specific attributes as arising from dynamic means. The dynamic attribute means are modeled as a Bayesian dynamic linear model (DLM). The DLM is nested within a factor-analytic choice model. Our approach makes efficient use of the data by leveraging estimates from previous and future periods to estimate current period attributes. We demonstrate the robustness of our model with data that simulate a variety of dynamic scenarios, including stationary behavior. We show that misspecified attribute dynamics induce temporal heteroskedasticty and correlation between the preference weights and the error term. Applying the model to a panel data set on household purchases in the malt beverage category, we find considerable evidence for dynamics in the latent brand attributes. From a managerial perspective, we find advertising expenditures help explain variation in the dynamic attribute means. |
doi_str_mv | 10.1287/mksc.1100.0620 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracmisc_A254013048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A254013048</galeid><jstor_id>23012000</jstor_id><sourcerecordid>A254013048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c630t-18b0e0e5e48067973136803b3778a05b12155eb4e4e76ebf9ec65b61868ebf493</originalsourceid><addsrcrecordid>eNqFkk2LFDEQhoMoOK5evQmNHgSxx8pHJ-njsqy6suLBFbyFdFs9k9nuzpikF_bfmziyfjAgoaqS8NRLpSqEPKWwpkyrN9N17NeUAqxBMrhHVrRhsm6E_nqfrEBxVjPetg_Joxh3AKAY6BV5dbXF6vzGj0tyfq78UF3MCcNsx-qjDdeYqs8pLH1aAj4mDwY7RnzyK56QL2_Pr87e15ef3l2cnV7WveSQaqo7QMAGhQapWsUplxp4x5XSFpqOMto02AkUqCR2Q4u9bDpJtdT5JFp-Ql4edPfBf18wJjO52OM42hn9Eo1WgrYcKGTy-T_kzi-l9gxJLgRjusi9OEAbO6Jx8-BTsH2RNKesEUA5CJ2p-gi1wRmDHf2Mg8vXf_HrI3xe33By_dGE138kdEt0M8bsottsU9zYJcaj-n3wMQYczD64yYZbQ8GUcZsyblPGbcq4c8KHQ0LAPfZ3tJsnH36iN4ZbDtndZmNAaQ6ubLPtS1TC5H6ZbZqy2LOD2C4mH-7EWO46y1_nd7fKw8MU_1fcDwRyyjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863442289</pqid></control><display><type>article</type><title>The Evolution of Internal Market Structure</title><source>Informs</source><source>RePEc</source><source>Business Source Complete</source><source>JSTOR</source><creator>Rutz, Oliver J. ; Sonnier, Garrett P.</creator><creatorcontrib>Rutz, Oliver J. ; Sonnier, Garrett P.</creatorcontrib><description>We present a dynamic factor-analytic choice model to capture evolution of brand positions in latent attribute space. Our dynamic model allows researchers to investigate brand positioning in new categories or mature categories affected by structural change such as entry. We argue that even for mature categories not affected by structural change, the assumption of stable attributes may be untenable. We allow for evolution in attributes by modeling individual-level time-specific attributes as arising from dynamic means. The dynamic attribute means are modeled as a Bayesian dynamic linear model (DLM). The DLM is nested within a factor-analytic choice model. Our approach makes efficient use of the data by leveraging estimates from previous and future periods to estimate current period attributes. We demonstrate the robustness of our model with data that simulate a variety of dynamic scenarios, including stationary behavior. We show that misspecified attribute dynamics induce temporal heteroskedasticty and correlation between the preference weights and the error term. Applying the model to a panel data set on household purchases in the malt beverage category, we find considerable evidence for dynamics in the latent brand attributes. From a managerial perspective, we find advertising expenditures help explain variation in the dynamic attribute means.</description><identifier>ISSN: 0732-2399</identifier><identifier>EISSN: 1526-548X</identifier><identifier>DOI: 10.1287/mksc.1100.0620</identifier><identifier>CODEN: MARSE5</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Advertising ; Advertising expenditures ; Algorithms ; Analysis ; Bayesian analysis ; Bayesian estimation ; Brands ; Breweries ; choice modeling ; Competition ; Consumers ; Correlation ; Correlation analysis ; Discriminant analysis ; Dynamic modeling ; dynamic models ; Dynamics ; Estimators for the mean ; Evolution ; factor-analytic models ; Financial market structures ; Linear models ; Market positioning ; Market share ; Marketing ; Markov processes ; Modeling ; Packaged goods ; Parametric models ; Preferences ; Static modeling ; Studies ; Uncertainty</subject><ispartof>Marketing science (Providence, R.I.), 2011-03, Vol.30 (2), p.274-289</ispartof><rights>2011 INFORMS</rights><rights>COPYRIGHT 2011 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Mar/Apr 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c630t-18b0e0e5e48067973136803b3778a05b12155eb4e4e76ebf9ec65b61868ebf493</citedby><cites>FETCH-LOGICAL-c630t-18b0e0e5e48067973136803b3778a05b12155eb4e4e76ebf9ec65b61868ebf493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23012000$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/mksc.1100.0620$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,3692,4008,27924,27925,58017,58250,62616</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/inmormksc/v_3a30_3ay_3a2011_3ai_3a2_3ap_3a274-289.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Rutz, Oliver J.</creatorcontrib><creatorcontrib>Sonnier, Garrett P.</creatorcontrib><title>The Evolution of Internal Market Structure</title><title>Marketing science (Providence, R.I.)</title><description>We present a dynamic factor-analytic choice model to capture evolution of brand positions in latent attribute space. Our dynamic model allows researchers to investigate brand positioning in new categories or mature categories affected by structural change such as entry. We argue that even for mature categories not affected by structural change, the assumption of stable attributes may be untenable. We allow for evolution in attributes by modeling individual-level time-specific attributes as arising from dynamic means. The dynamic attribute means are modeled as a Bayesian dynamic linear model (DLM). The DLM is nested within a factor-analytic choice model. Our approach makes efficient use of the data by leveraging estimates from previous and future periods to estimate current period attributes. We demonstrate the robustness of our model with data that simulate a variety of dynamic scenarios, including stationary behavior. We show that misspecified attribute dynamics induce temporal heteroskedasticty and correlation between the preference weights and the error term. Applying the model to a panel data set on household purchases in the malt beverage category, we find considerable evidence for dynamics in the latent brand attributes. From a managerial perspective, we find advertising expenditures help explain variation in the dynamic attribute means.</description><subject>Advertising</subject><subject>Advertising expenditures</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Bayesian analysis</subject><subject>Bayesian estimation</subject><subject>Brands</subject><subject>Breweries</subject><subject>choice modeling</subject><subject>Competition</subject><subject>Consumers</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Discriminant analysis</subject><subject>Dynamic modeling</subject><subject>dynamic models</subject><subject>Dynamics</subject><subject>Estimators for the mean</subject><subject>Evolution</subject><subject>factor-analytic models</subject><subject>Financial market structures</subject><subject>Linear models</subject><subject>Market positioning</subject><subject>Market share</subject><subject>Marketing</subject><subject>Markov processes</subject><subject>Modeling</subject><subject>Packaged goods</subject><subject>Parametric models</subject><subject>Preferences</subject><subject>Static modeling</subject><subject>Studies</subject><subject>Uncertainty</subject><issn>0732-2399</issn><issn>1526-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>N95</sourceid><recordid>eNqFkk2LFDEQhoMoOK5evQmNHgSxx8pHJ-njsqy6suLBFbyFdFs9k9nuzpikF_bfmziyfjAgoaqS8NRLpSqEPKWwpkyrN9N17NeUAqxBMrhHVrRhsm6E_nqfrEBxVjPetg_Joxh3AKAY6BV5dbXF6vzGj0tyfq78UF3MCcNsx-qjDdeYqs8pLH1aAj4mDwY7RnzyK56QL2_Pr87e15ef3l2cnV7WveSQaqo7QMAGhQapWsUplxp4x5XSFpqOMto02AkUqCR2Q4u9bDpJtdT5JFp-Ql4edPfBf18wJjO52OM42hn9Eo1WgrYcKGTy-T_kzi-l9gxJLgRjusi9OEAbO6Jx8-BTsH2RNKesEUA5CJ2p-gi1wRmDHf2Mg8vXf_HrI3xe33By_dGE138kdEt0M8bsottsU9zYJcaj-n3wMQYczD64yYZbQ8GUcZsyblPGbcq4c8KHQ0LAPfZ3tJsnH36iN4ZbDtndZmNAaQ6ubLPtS1TC5H6ZbZqy2LOD2C4mH-7EWO46y1_nd7fKw8MU_1fcDwRyyjM</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Rutz, Oliver J.</creator><creator>Sonnier, Garrett P.</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences (INFORMS)</general><general>Institute for Operations Research and the Management Sciences</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20110301</creationdate><title>The Evolution of Internal Market Structure</title><author>Rutz, Oliver J. ; Sonnier, Garrett P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c630t-18b0e0e5e48067973136803b3778a05b12155eb4e4e76ebf9ec65b61868ebf493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Advertising</topic><topic>Advertising expenditures</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Bayesian analysis</topic><topic>Bayesian estimation</topic><topic>Brands</topic><topic>Breweries</topic><topic>choice modeling</topic><topic>Competition</topic><topic>Consumers</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Discriminant analysis</topic><topic>Dynamic modeling</topic><topic>dynamic models</topic><topic>Dynamics</topic><topic>Estimators for the mean</topic><topic>Evolution</topic><topic>factor-analytic models</topic><topic>Financial market structures</topic><topic>Linear models</topic><topic>Market positioning</topic><topic>Market share</topic><topic>Marketing</topic><topic>Markov processes</topic><topic>Modeling</topic><topic>Packaged goods</topic><topic>Parametric models</topic><topic>Preferences</topic><topic>Static modeling</topic><topic>Studies</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rutz, Oliver J.</creatorcontrib><creatorcontrib>Sonnier, Garrett P.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Gale Business Insights</collection><collection>Business Insights: Essentials</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Marketing science (Providence, R.I.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rutz, Oliver J.</au><au>Sonnier, Garrett P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Evolution of Internal Market Structure</atitle><jtitle>Marketing science (Providence, R.I.)</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>30</volume><issue>2</issue><spage>274</spage><epage>289</epage><pages>274-289</pages><issn>0732-2399</issn><eissn>1526-548X</eissn><coden>MARSE5</coden><abstract>We present a dynamic factor-analytic choice model to capture evolution of brand positions in latent attribute space. Our dynamic model allows researchers to investigate brand positioning in new categories or mature categories affected by structural change such as entry. We argue that even for mature categories not affected by structural change, the assumption of stable attributes may be untenable. We allow for evolution in attributes by modeling individual-level time-specific attributes as arising from dynamic means. The dynamic attribute means are modeled as a Bayesian dynamic linear model (DLM). The DLM is nested within a factor-analytic choice model. Our approach makes efficient use of the data by leveraging estimates from previous and future periods to estimate current period attributes. We demonstrate the robustness of our model with data that simulate a variety of dynamic scenarios, including stationary behavior. We show that misspecified attribute dynamics induce temporal heteroskedasticty and correlation between the preference weights and the error term. Applying the model to a panel data set on household purchases in the malt beverage category, we find considerable evidence for dynamics in the latent brand attributes. From a managerial perspective, we find advertising expenditures help explain variation in the dynamic attribute means.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/mksc.1100.0620</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0732-2399 |
ispartof | Marketing science (Providence, R.I.), 2011-03, Vol.30 (2), p.274-289 |
issn | 0732-2399 1526-548X |
language | eng |
recordid | cdi_gale_infotracmisc_A254013048 |
source | Informs; RePEc; Business Source Complete; JSTOR |
subjects | Advertising Advertising expenditures Algorithms Analysis Bayesian analysis Bayesian estimation Brands Breweries choice modeling Competition Consumers Correlation Correlation analysis Discriminant analysis Dynamic modeling dynamic models Dynamics Estimators for the mean Evolution factor-analytic models Financial market structures Linear models Market positioning Market share Marketing Markov processes Modeling Packaged goods Parametric models Preferences Static modeling Studies Uncertainty |
title | The Evolution of Internal Market Structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Evolution%20of%20Internal%20Market%20Structure&rft.jtitle=Marketing%20science%20(Providence,%20R.I.)&rft.au=Rutz,%20Oliver%20J.&rft.date=2011-03-01&rft.volume=30&rft.issue=2&rft.spage=274&rft.epage=289&rft.pages=274-289&rft.issn=0732-2399&rft.eissn=1526-548X&rft.coden=MARSE5&rft_id=info:doi/10.1287/mksc.1100.0620&rft_dat=%3Cgale_proqu%3EA254013048%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863442289&rft_id=info:pmid/&rft_galeid=A254013048&rft_jstor_id=23012000&rfr_iscdi=true |