A keystroke biometric system for long-text input
A novel keystroke biometric system for long-text input was developed and evaluated for user identification and authentication applications. The system consists of a Java applet to collect raw keystroke data over the Internet, a feature extractor, and pattern classifiers to make identification or aut...
Gespeichert in:
Veröffentlicht in: | International journal of information security and privacy 2010-01, Vol.4 (1), p.32 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 32 |
container_title | International journal of information security and privacy |
container_volume | 4 |
creator | Tappert, Charles C Cha, Sung-Hyuk Villani, Mary Zack, Robert S |
description | A novel keystroke biometric system for long-text input was developed and evaluated for user identification and authentication applications. The system consists of a Java applet to collect raw keystroke data over the Internet, a feature extractor, and pattern classifiers to make identification or authentication decisions. Experiments on more than 100 participants investigated two input modes--copy and free-text--and two keyboard types--desktop and laptop. The system can accurately identify or authenticate individuals if the same type of keyboard is used to produce the enrollment and questioned input samples. Longitudinal experiments quantified performance degradation over intervals of several weeks and two years. Additional experiments investigated the system's hierarchical model, parameter settings, assumptions, and sufficiency of enrollment samples and input-text length. Although evaluated on input texts up to 650 keystrokes, the authors found that input of 300 keystrokes, roughly four lines of text, is sufficient for the important applications described. Keywords: Biometrics, Behavioral Biometrics, Keystroke Biometric, User Authentication, User Identification |
doi_str_mv | 10.4018/jisp.2010010103 |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A232395734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A232395734</galeid><sourcerecordid>A232395734</sourcerecordid><originalsourceid>FETCH-LOGICAL-g222t-f06bfbd38778a03a8c478f780e2a57b280e9d48a477fc562163aedce5330a9ba3</originalsourceid><addsrcrecordid>eNptTEtLxDAYzEHBdfXsNeC565dXkx7L4gsWvOh5SdMvJbttszQR9N8b0IOHZQZmGGaGkDsGGwnMPBxCOm04MChkIC7IijUCKlYruCLXKR0AlFKSrwi09IjfKS_xiLQLccK8BEdTiXCiPi50jPNQZfzKNMynz3xDLr0dE97-6Zp8PD2-b1-q3dvz67bdVQPnPFce6s53vTBaGwvCGie18doAcqt0x4tpemms1No7VXNWC4u9QyUE2KazYk3uf38HO-I-zD7mxbopJLdvueCiUVrI0tqcaRX0OAUXZ_Sh5P8GP9R1U78</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A keystroke biometric system for long-text input</title><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Tappert, Charles C ; Cha, Sung-Hyuk ; Villani, Mary ; Zack, Robert S</creator><creatorcontrib>Tappert, Charles C ; Cha, Sung-Hyuk ; Villani, Mary ; Zack, Robert S</creatorcontrib><description>A novel keystroke biometric system for long-text input was developed and evaluated for user identification and authentication applications. The system consists of a Java applet to collect raw keystroke data over the Internet, a feature extractor, and pattern classifiers to make identification or authentication decisions. Experiments on more than 100 participants investigated two input modes--copy and free-text--and two keyboard types--desktop and laptop. The system can accurately identify or authenticate individuals if the same type of keyboard is used to produce the enrollment and questioned input samples. Longitudinal experiments quantified performance degradation over intervals of several weeks and two years. Additional experiments investigated the system's hierarchical model, parameter settings, assumptions, and sufficiency of enrollment samples and input-text length. Although evaluated on input texts up to 650 keystrokes, the authors found that input of 300 keystrokes, roughly four lines of text, is sufficient for the important applications described. Keywords: Biometrics, Behavioral Biometrics, Keystroke Biometric, User Authentication, User Identification</description><identifier>ISSN: 1930-1650</identifier><identifier>DOI: 10.4018/jisp.2010010103</identifier><language>eng</language><publisher>IGI Global</publisher><subject>Access control (Computers) ; Authentication ; Biometry ; Methods</subject><ispartof>International journal of information security and privacy, 2010-01, Vol.4 (1), p.32</ispartof><rights>COPYRIGHT 2010 IGI Global</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tappert, Charles C</creatorcontrib><creatorcontrib>Cha, Sung-Hyuk</creatorcontrib><creatorcontrib>Villani, Mary</creatorcontrib><creatorcontrib>Zack, Robert S</creatorcontrib><title>A keystroke biometric system for long-text input</title><title>International journal of information security and privacy</title><description>A novel keystroke biometric system for long-text input was developed and evaluated for user identification and authentication applications. The system consists of a Java applet to collect raw keystroke data over the Internet, a feature extractor, and pattern classifiers to make identification or authentication decisions. Experiments on more than 100 participants investigated two input modes--copy and free-text--and two keyboard types--desktop and laptop. The system can accurately identify or authenticate individuals if the same type of keyboard is used to produce the enrollment and questioned input samples. Longitudinal experiments quantified performance degradation over intervals of several weeks and two years. Additional experiments investigated the system's hierarchical model, parameter settings, assumptions, and sufficiency of enrollment samples and input-text length. Although evaluated on input texts up to 650 keystrokes, the authors found that input of 300 keystrokes, roughly four lines of text, is sufficient for the important applications described. Keywords: Biometrics, Behavioral Biometrics, Keystroke Biometric, User Authentication, User Identification</description><subject>Access control (Computers)</subject><subject>Authentication</subject><subject>Biometry</subject><subject>Methods</subject><issn>1930-1650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptTEtLxDAYzEHBdfXsNeC565dXkx7L4gsWvOh5SdMvJbttszQR9N8b0IOHZQZmGGaGkDsGGwnMPBxCOm04MChkIC7IijUCKlYruCLXKR0AlFKSrwi09IjfKS_xiLQLccK8BEdTiXCiPi50jPNQZfzKNMynz3xDLr0dE97-6Zp8PD2-b1-q3dvz67bdVQPnPFce6s53vTBaGwvCGie18doAcqt0x4tpemms1No7VXNWC4u9QyUE2KazYk3uf38HO-I-zD7mxbopJLdvueCiUVrI0tqcaRX0OAUXZ_Sh5P8GP9R1U78</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Tappert, Charles C</creator><creator>Cha, Sung-Hyuk</creator><creator>Villani, Mary</creator><creator>Zack, Robert S</creator><general>IGI Global</general><scope/></search><sort><creationdate>20100101</creationdate><title>A keystroke biometric system for long-text input</title><author>Tappert, Charles C ; Cha, Sung-Hyuk ; Villani, Mary ; Zack, Robert S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g222t-f06bfbd38778a03a8c478f780e2a57b280e9d48a477fc562163aedce5330a9ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Access control (Computers)</topic><topic>Authentication</topic><topic>Biometry</topic><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tappert, Charles C</creatorcontrib><creatorcontrib>Cha, Sung-Hyuk</creatorcontrib><creatorcontrib>Villani, Mary</creatorcontrib><creatorcontrib>Zack, Robert S</creatorcontrib><jtitle>International journal of information security and privacy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tappert, Charles C</au><au>Cha, Sung-Hyuk</au><au>Villani, Mary</au><au>Zack, Robert S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A keystroke biometric system for long-text input</atitle><jtitle>International journal of information security and privacy</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>4</volume><issue>1</issue><spage>32</spage><pages>32-</pages><issn>1930-1650</issn><abstract>A novel keystroke biometric system for long-text input was developed and evaluated for user identification and authentication applications. The system consists of a Java applet to collect raw keystroke data over the Internet, a feature extractor, and pattern classifiers to make identification or authentication decisions. Experiments on more than 100 participants investigated two input modes--copy and free-text--and two keyboard types--desktop and laptop. The system can accurately identify or authenticate individuals if the same type of keyboard is used to produce the enrollment and questioned input samples. Longitudinal experiments quantified performance degradation over intervals of several weeks and two years. Additional experiments investigated the system's hierarchical model, parameter settings, assumptions, and sufficiency of enrollment samples and input-text length. Although evaluated on input texts up to 650 keystrokes, the authors found that input of 300 keystrokes, roughly four lines of text, is sufficient for the important applications described. Keywords: Biometrics, Behavioral Biometrics, Keystroke Biometric, User Authentication, User Identification</abstract><pub>IGI Global</pub><doi>10.4018/jisp.2010010103</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1930-1650 |
ispartof | International journal of information security and privacy, 2010-01, Vol.4 (1), p.32 |
issn | 1930-1650 |
language | eng |
recordid | cdi_gale_infotracmisc_A232395734 |
source | Alma/SFX Local Collection; ProQuest Central |
subjects | Access control (Computers) Authentication Biometry Methods |
title | A keystroke biometric system for long-text input |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A50%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20keystroke%20biometric%20system%20for%20long-text%20input&rft.jtitle=International%20journal%20of%20information%20security%20and%20privacy&rft.au=Tappert,%20Charles%20C&rft.date=2010-01-01&rft.volume=4&rft.issue=1&rft.spage=32&rft.pages=32-&rft.issn=1930-1650&rft_id=info:doi/10.4018/jisp.2010010103&rft_dat=%3Cgale%3EA232395734%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A232395734&rfr_iscdi=true |