The Stochastic Multiperiod Location Transportation Problem
This paper studies a stochastic multiperiod location-transportation problem (SMLTP) characterized by multiple transportation options, multiple demand periods, and a stochastic demand. We consider the determination of the number and location of the depots required to satisfy customer demand as well a...
Gespeichert in:
Veröffentlicht in: | Transportation science 2010-05, Vol.44 (2), p.221-237 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 237 |
---|---|
container_issue | 2 |
container_start_page | 221 |
container_title | Transportation science |
container_volume | 44 |
creator | Klibi, Walid Lasalle, Francis Martel, Alain Ichoua, Soumia |
description | This paper studies a stochastic multiperiod location-transportation problem (SMLTP) characterized by multiple transportation options, multiple demand periods, and a stochastic demand. We consider the determination of the number and location of the depots required to satisfy customer demand as well as the mission of these depots in terms of the subset of customers they must supply. The problem is formulated as a stochastic program with recourse, and a hierarchical heuristic solution approach is proposed. It incorporates a tabu search procedure, an approximate route length formula, and a modified procedure of Clarke and Wright (Clarke, G., J. W. Wright. 1964. Scheduling of vehicles from a central depot to a number of delivery points.
Oper. Res.
12
568-581). Three neighbourhood exploration strategies are proposed and compared with extensive experiments based on realistic problems. |
doi_str_mv | 10.1287/trsc.1090.0307 |
format | Article |
fullrecord | <record><control><sourceid>gale_pasca</sourceid><recordid>TN_cdi_gale_infotracmisc_A228076776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A228076776</galeid><jstor_id>25769493</jstor_id><sourcerecordid>A228076776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-ea5074fa823525dcbc0550692682f97850afd5c075fc268ddac821dae1d93a583</originalsourceid><addsrcrecordid>eNqFkd-LEzEQx4MoWE9ffROKIr64NT92NlnfjkM9oYeC9Tmk2aRN2d3UTPbh_nuz9PBUCkcgYSaf7yQzX0JeMrpiXMkPOaFdMdrSFRVUPiILBrypoK7lY7KgtGYVawCekmeIB0oZSAYL8nGzd8sfOdq9wRzs8mbqczi6FGK3XEdrcojjcpPMiMeY8in8nuK2d8Nz8sSbHt2Lu_OC_Pz8aXN1Xa2_ffl6dbmuLDQsV84AlbU3igvg0NmtpQC0aXmjuG-lAmp8B5ZK8Lbkus5YxVlnHOtaYUCJC_LuVPeY4q_JYdZDQOv63owuTqhV6YoDE6KQr_8jD3FKY_mcFrUEygRAgd6coJ3pnQ6jjzkZO5fUl5wrKhspm0JVZ6idG10yfRydDyX9D786w5fVuSHYs4L3fwm2E4bRYdkw7PYZd2ZCPFvfpoiYnNfHFAaTbjWjerZfz_br2X49218Eb-9mYdCa3hcLbcA_Ks5lK0HN03114g6YY7q_B9m0dSvuBzH3lAZ86N3fSVDFkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>347501355</pqid></control><display><type>article</type><title>The Stochastic Multiperiod Location Transportation Problem</title><source>Jstor Complete Legacy</source><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><creator>Klibi, Walid ; Lasalle, Francis ; Martel, Alain ; Ichoua, Soumia</creator><creatorcontrib>Klibi, Walid ; Lasalle, Francis ; Martel, Alain ; Ichoua, Soumia</creatorcontrib><description>This paper studies a stochastic multiperiod location-transportation problem (SMLTP) characterized by multiple transportation options, multiple demand periods, and a stochastic demand. We consider the determination of the number and location of the depots required to satisfy customer demand as well as the mission of these depots in terms of the subset of customers they must supply. The problem is formulated as a stochastic program with recourse, and a hierarchical heuristic solution approach is proposed. It incorporates a tabu search procedure, an approximate route length formula, and a modified procedure of Clarke and Wright (Clarke, G., J. W. Wright. 1964. Scheduling of vehicles from a central depot to a number of delivery points.
Oper. Res.
12
568-581). Three neighbourhood exploration strategies are proposed and compared with extensive experiments based on realistic problems.</description><identifier>ISSN: 0041-1655</identifier><identifier>EISSN: 1526-5447</identifier><identifier>DOI: 10.1287/trsc.1090.0307</identifier><identifier>CODEN: TRSCBJ</identifier><language>eng</language><publisher>Linthicum, MD: INFORMS</publisher><subject>Applied sciences ; Automobiles ; Determinism ; Exact sciences and technology ; Ground, air and sea transportation, marine construction ; Heuristic ; Heuristics ; Learning models (Stochastic processes) ; Location analysis ; location problem ; Monte Carlo method ; Monte Carlo scenarios ; Monte Carlo simulation ; Neighbourhoods ; Planning methods ; Sample size ; Services ; Shipments ; stochastic customer order process ; Stochastic models ; Stochastic processes ; stochastic programming ; Studies ; Taboos ; Tabu search ; Technology application ; Transport economics ; Transport infrastructure ; Transportation ; Transportation costs ; Transportation industry ; Transportation planning, management and economics ; transportation problem ; Transportation problem (Operations research) ; Truck routes</subject><ispartof>Transportation science, 2010-05, Vol.44 (2), p.221-237</ispartof><rights>Copyright © 2010 Institute for Operations Research and the Management Sciences</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2010 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences May 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-ea5074fa823525dcbc0550692682f97850afd5c075fc268ddac821dae1d93a583</citedby><cites>FETCH-LOGICAL-c561t-ea5074fa823525dcbc0550692682f97850afd5c075fc268ddac821dae1d93a583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25769493$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/trsc.1090.0307$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,799,3679,27903,27904,57995,58228,62592</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22797588$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Klibi, Walid</creatorcontrib><creatorcontrib>Lasalle, Francis</creatorcontrib><creatorcontrib>Martel, Alain</creatorcontrib><creatorcontrib>Ichoua, Soumia</creatorcontrib><title>The Stochastic Multiperiod Location Transportation Problem</title><title>Transportation science</title><description>This paper studies a stochastic multiperiod location-transportation problem (SMLTP) characterized by multiple transportation options, multiple demand periods, and a stochastic demand. We consider the determination of the number and location of the depots required to satisfy customer demand as well as the mission of these depots in terms of the subset of customers they must supply. The problem is formulated as a stochastic program with recourse, and a hierarchical heuristic solution approach is proposed. It incorporates a tabu search procedure, an approximate route length formula, and a modified procedure of Clarke and Wright (Clarke, G., J. W. Wright. 1964. Scheduling of vehicles from a central depot to a number of delivery points.
Oper. Res.
12
568-581). Three neighbourhood exploration strategies are proposed and compared with extensive experiments based on realistic problems.</description><subject>Applied sciences</subject><subject>Automobiles</subject><subject>Determinism</subject><subject>Exact sciences and technology</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>Heuristic</subject><subject>Heuristics</subject><subject>Learning models (Stochastic processes)</subject><subject>Location analysis</subject><subject>location problem</subject><subject>Monte Carlo method</subject><subject>Monte Carlo scenarios</subject><subject>Monte Carlo simulation</subject><subject>Neighbourhoods</subject><subject>Planning methods</subject><subject>Sample size</subject><subject>Services</subject><subject>Shipments</subject><subject>stochastic customer order process</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>stochastic programming</subject><subject>Studies</subject><subject>Taboos</subject><subject>Tabu search</subject><subject>Technology application</subject><subject>Transport economics</subject><subject>Transport infrastructure</subject><subject>Transportation</subject><subject>Transportation costs</subject><subject>Transportation industry</subject><subject>Transportation planning, management and economics</subject><subject>transportation problem</subject><subject>Transportation problem (Operations research)</subject><subject>Truck routes</subject><issn>0041-1655</issn><issn>1526-5447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFkd-LEzEQx4MoWE9ffROKIr64NT92NlnfjkM9oYeC9Tmk2aRN2d3UTPbh_nuz9PBUCkcgYSaf7yQzX0JeMrpiXMkPOaFdMdrSFRVUPiILBrypoK7lY7KgtGYVawCekmeIB0oZSAYL8nGzd8sfOdq9wRzs8mbqczi6FGK3XEdrcojjcpPMiMeY8in8nuK2d8Nz8sSbHt2Lu_OC_Pz8aXN1Xa2_ffl6dbmuLDQsV84AlbU3igvg0NmtpQC0aXmjuG-lAmp8B5ZK8Lbkus5YxVlnHOtaYUCJC_LuVPeY4q_JYdZDQOv63owuTqhV6YoDE6KQr_8jD3FKY_mcFrUEygRAgd6coJ3pnQ6jjzkZO5fUl5wrKhspm0JVZ6idG10yfRydDyX9D786w5fVuSHYs4L3fwm2E4bRYdkw7PYZd2ZCPFvfpoiYnNfHFAaTbjWjerZfz_br2X49218Eb-9mYdCa3hcLbcA_Ks5lK0HN03114g6YY7q_B9m0dSvuBzH3lAZ86N3fSVDFkg</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Klibi, Walid</creator><creator>Lasalle, Francis</creator><creator>Martel, Alain</creator><creator>Ichoua, Soumia</creator><general>INFORMS</general><general>Transportation Science & Logistic Society of the Institute for Operations Research and Management Sciences</general><general>Institute for Operations Research and the Management Sciences</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20100501</creationdate><title>The Stochastic Multiperiod Location Transportation Problem</title><author>Klibi, Walid ; Lasalle, Francis ; Martel, Alain ; Ichoua, Soumia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-ea5074fa823525dcbc0550692682f97850afd5c075fc268ddac821dae1d93a583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Automobiles</topic><topic>Determinism</topic><topic>Exact sciences and technology</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>Heuristic</topic><topic>Heuristics</topic><topic>Learning models (Stochastic processes)</topic><topic>Location analysis</topic><topic>location problem</topic><topic>Monte Carlo method</topic><topic>Monte Carlo scenarios</topic><topic>Monte Carlo simulation</topic><topic>Neighbourhoods</topic><topic>Planning methods</topic><topic>Sample size</topic><topic>Services</topic><topic>Shipments</topic><topic>stochastic customer order process</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>stochastic programming</topic><topic>Studies</topic><topic>Taboos</topic><topic>Tabu search</topic><topic>Technology application</topic><topic>Transport economics</topic><topic>Transport infrastructure</topic><topic>Transportation</topic><topic>Transportation costs</topic><topic>Transportation industry</topic><topic>Transportation planning, management and economics</topic><topic>transportation problem</topic><topic>Transportation problem (Operations research)</topic><topic>Truck routes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klibi, Walid</creatorcontrib><creatorcontrib>Lasalle, Francis</creatorcontrib><creatorcontrib>Martel, Alain</creatorcontrib><creatorcontrib>Ichoua, Soumia</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Transportation science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klibi, Walid</au><au>Lasalle, Francis</au><au>Martel, Alain</au><au>Ichoua, Soumia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Stochastic Multiperiod Location Transportation Problem</atitle><jtitle>Transportation science</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>44</volume><issue>2</issue><spage>221</spage><epage>237</epage><pages>221-237</pages><issn>0041-1655</issn><eissn>1526-5447</eissn><coden>TRSCBJ</coden><abstract>This paper studies a stochastic multiperiod location-transportation problem (SMLTP) characterized by multiple transportation options, multiple demand periods, and a stochastic demand. We consider the determination of the number and location of the depots required to satisfy customer demand as well as the mission of these depots in terms of the subset of customers they must supply. The problem is formulated as a stochastic program with recourse, and a hierarchical heuristic solution approach is proposed. It incorporates a tabu search procedure, an approximate route length formula, and a modified procedure of Clarke and Wright (Clarke, G., J. W. Wright. 1964. Scheduling of vehicles from a central depot to a number of delivery points.
Oper. Res.
12
568-581). Three neighbourhood exploration strategies are proposed and compared with extensive experiments based on realistic problems.</abstract><cop>Linthicum, MD</cop><pub>INFORMS</pub><doi>10.1287/trsc.1090.0307</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-1655 |
ispartof | Transportation science, 2010-05, Vol.44 (2), p.221-237 |
issn | 0041-1655 1526-5447 |
language | eng |
recordid | cdi_gale_infotracmisc_A228076776 |
source | Jstor Complete Legacy; INFORMS PubsOnLine; Business Source Complete |
subjects | Applied sciences Automobiles Determinism Exact sciences and technology Ground, air and sea transportation, marine construction Heuristic Heuristics Learning models (Stochastic processes) Location analysis location problem Monte Carlo method Monte Carlo scenarios Monte Carlo simulation Neighbourhoods Planning methods Sample size Services Shipments stochastic customer order process Stochastic models Stochastic processes stochastic programming Studies Taboos Tabu search Technology application Transport economics Transport infrastructure Transportation Transportation costs Transportation industry Transportation planning, management and economics transportation problem Transportation problem (Operations research) Truck routes |
title | The Stochastic Multiperiod Location Transportation Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Stochastic%20Multiperiod%20Location%20Transportation%20Problem&rft.jtitle=Transportation%20science&rft.au=Klibi,%20Walid&rft.date=2010-05-01&rft.volume=44&rft.issue=2&rft.spage=221&rft.epage=237&rft.pages=221-237&rft.issn=0041-1655&rft.eissn=1526-5447&rft.coden=TRSCBJ&rft_id=info:doi/10.1287/trsc.1090.0307&rft_dat=%3Cgale_pasca%3EA228076776%3C/gale_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=347501355&rft_id=info:pmid/&rft_galeid=A228076776&rft_jstor_id=25769493&rfr_iscdi=true |