The Stochastic Multiperiod Location Transportation Problem

This paper studies a stochastic multiperiod location-transportation problem (SMLTP) characterized by multiple transportation options, multiple demand periods, and a stochastic demand. We consider the determination of the number and location of the depots required to satisfy customer demand as well a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation science 2010-05, Vol.44 (2), p.221-237
Hauptverfasser: Klibi, Walid, Lasalle, Francis, Martel, Alain, Ichoua, Soumia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 237
container_issue 2
container_start_page 221
container_title Transportation science
container_volume 44
creator Klibi, Walid
Lasalle, Francis
Martel, Alain
Ichoua, Soumia
description This paper studies a stochastic multiperiod location-transportation problem (SMLTP) characterized by multiple transportation options, multiple demand periods, and a stochastic demand. We consider the determination of the number and location of the depots required to satisfy customer demand as well as the mission of these depots in terms of the subset of customers they must supply. The problem is formulated as a stochastic program with recourse, and a hierarchical heuristic solution approach is proposed. It incorporates a tabu search procedure, an approximate route length formula, and a modified procedure of Clarke and Wright (Clarke, G., J. W. Wright. 1964. Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12 568-581). Three neighbourhood exploration strategies are proposed and compared with extensive experiments based on realistic problems.
doi_str_mv 10.1287/trsc.1090.0307
format Article
fullrecord <record><control><sourceid>gale_pasca</sourceid><recordid>TN_cdi_gale_infotracmisc_A228076776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A228076776</galeid><jstor_id>25769493</jstor_id><sourcerecordid>A228076776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-ea5074fa823525dcbc0550692682f97850afd5c075fc268ddac821dae1d93a583</originalsourceid><addsrcrecordid>eNqFkd-LEzEQx4MoWE9ffROKIr64NT92NlnfjkM9oYeC9Tmk2aRN2d3UTPbh_nuz9PBUCkcgYSaf7yQzX0JeMrpiXMkPOaFdMdrSFRVUPiILBrypoK7lY7KgtGYVawCekmeIB0oZSAYL8nGzd8sfOdq9wRzs8mbqczi6FGK3XEdrcojjcpPMiMeY8in8nuK2d8Nz8sSbHt2Lu_OC_Pz8aXN1Xa2_ffl6dbmuLDQsV84AlbU3igvg0NmtpQC0aXmjuG-lAmp8B5ZK8Lbkus5YxVlnHOtaYUCJC_LuVPeY4q_JYdZDQOv63owuTqhV6YoDE6KQr_8jD3FKY_mcFrUEygRAgd6coJ3pnQ6jjzkZO5fUl5wrKhspm0JVZ6idG10yfRydDyX9D786w5fVuSHYs4L3fwm2E4bRYdkw7PYZd2ZCPFvfpoiYnNfHFAaTbjWjerZfz_br2X49218Eb-9mYdCa3hcLbcA_Ks5lK0HN03114g6YY7q_B9m0dSvuBzH3lAZ86N3fSVDFkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>347501355</pqid></control><display><type>article</type><title>The Stochastic Multiperiod Location Transportation Problem</title><source>Jstor Complete Legacy</source><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><creator>Klibi, Walid ; Lasalle, Francis ; Martel, Alain ; Ichoua, Soumia</creator><creatorcontrib>Klibi, Walid ; Lasalle, Francis ; Martel, Alain ; Ichoua, Soumia</creatorcontrib><description>This paper studies a stochastic multiperiod location-transportation problem (SMLTP) characterized by multiple transportation options, multiple demand periods, and a stochastic demand. We consider the determination of the number and location of the depots required to satisfy customer demand as well as the mission of these depots in terms of the subset of customers they must supply. The problem is formulated as a stochastic program with recourse, and a hierarchical heuristic solution approach is proposed. It incorporates a tabu search procedure, an approximate route length formula, and a modified procedure of Clarke and Wright (Clarke, G., J. W. Wright. 1964. Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12 568-581). Three neighbourhood exploration strategies are proposed and compared with extensive experiments based on realistic problems.</description><identifier>ISSN: 0041-1655</identifier><identifier>EISSN: 1526-5447</identifier><identifier>DOI: 10.1287/trsc.1090.0307</identifier><identifier>CODEN: TRSCBJ</identifier><language>eng</language><publisher>Linthicum, MD: INFORMS</publisher><subject>Applied sciences ; Automobiles ; Determinism ; Exact sciences and technology ; Ground, air and sea transportation, marine construction ; Heuristic ; Heuristics ; Learning models (Stochastic processes) ; Location analysis ; location problem ; Monte Carlo method ; Monte Carlo scenarios ; Monte Carlo simulation ; Neighbourhoods ; Planning methods ; Sample size ; Services ; Shipments ; stochastic customer order process ; Stochastic models ; Stochastic processes ; stochastic programming ; Studies ; Taboos ; Tabu search ; Technology application ; Transport economics ; Transport infrastructure ; Transportation ; Transportation costs ; Transportation industry ; Transportation planning, management and economics ; transportation problem ; Transportation problem (Operations research) ; Truck routes</subject><ispartof>Transportation science, 2010-05, Vol.44 (2), p.221-237</ispartof><rights>Copyright © 2010 Institute for Operations Research and the Management Sciences</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2010 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences May 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-ea5074fa823525dcbc0550692682f97850afd5c075fc268ddac821dae1d93a583</citedby><cites>FETCH-LOGICAL-c561t-ea5074fa823525dcbc0550692682f97850afd5c075fc268ddac821dae1d93a583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25769493$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/trsc.1090.0307$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,799,3679,27903,27904,57995,58228,62592</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22797588$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Klibi, Walid</creatorcontrib><creatorcontrib>Lasalle, Francis</creatorcontrib><creatorcontrib>Martel, Alain</creatorcontrib><creatorcontrib>Ichoua, Soumia</creatorcontrib><title>The Stochastic Multiperiod Location Transportation Problem</title><title>Transportation science</title><description>This paper studies a stochastic multiperiod location-transportation problem (SMLTP) characterized by multiple transportation options, multiple demand periods, and a stochastic demand. We consider the determination of the number and location of the depots required to satisfy customer demand as well as the mission of these depots in terms of the subset of customers they must supply. The problem is formulated as a stochastic program with recourse, and a hierarchical heuristic solution approach is proposed. It incorporates a tabu search procedure, an approximate route length formula, and a modified procedure of Clarke and Wright (Clarke, G., J. W. Wright. 1964. Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12 568-581). Three neighbourhood exploration strategies are proposed and compared with extensive experiments based on realistic problems.</description><subject>Applied sciences</subject><subject>Automobiles</subject><subject>Determinism</subject><subject>Exact sciences and technology</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>Heuristic</subject><subject>Heuristics</subject><subject>Learning models (Stochastic processes)</subject><subject>Location analysis</subject><subject>location problem</subject><subject>Monte Carlo method</subject><subject>Monte Carlo scenarios</subject><subject>Monte Carlo simulation</subject><subject>Neighbourhoods</subject><subject>Planning methods</subject><subject>Sample size</subject><subject>Services</subject><subject>Shipments</subject><subject>stochastic customer order process</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>stochastic programming</subject><subject>Studies</subject><subject>Taboos</subject><subject>Tabu search</subject><subject>Technology application</subject><subject>Transport economics</subject><subject>Transport infrastructure</subject><subject>Transportation</subject><subject>Transportation costs</subject><subject>Transportation industry</subject><subject>Transportation planning, management and economics</subject><subject>transportation problem</subject><subject>Transportation problem (Operations research)</subject><subject>Truck routes</subject><issn>0041-1655</issn><issn>1526-5447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFkd-LEzEQx4MoWE9ffROKIr64NT92NlnfjkM9oYeC9Tmk2aRN2d3UTPbh_nuz9PBUCkcgYSaf7yQzX0JeMrpiXMkPOaFdMdrSFRVUPiILBrypoK7lY7KgtGYVawCekmeIB0oZSAYL8nGzd8sfOdq9wRzs8mbqczi6FGK3XEdrcojjcpPMiMeY8in8nuK2d8Nz8sSbHt2Lu_OC_Pz8aXN1Xa2_ffl6dbmuLDQsV84AlbU3igvg0NmtpQC0aXmjuG-lAmp8B5ZK8Lbkus5YxVlnHOtaYUCJC_LuVPeY4q_JYdZDQOv63owuTqhV6YoDE6KQr_8jD3FKY_mcFrUEygRAgd6coJ3pnQ6jjzkZO5fUl5wrKhspm0JVZ6idG10yfRydDyX9D786w5fVuSHYs4L3fwm2E4bRYdkw7PYZd2ZCPFvfpoiYnNfHFAaTbjWjerZfz_br2X49218Eb-9mYdCa3hcLbcA_Ks5lK0HN03114g6YY7q_B9m0dSvuBzH3lAZ86N3fSVDFkg</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Klibi, Walid</creator><creator>Lasalle, Francis</creator><creator>Martel, Alain</creator><creator>Ichoua, Soumia</creator><general>INFORMS</general><general>Transportation Science &amp; Logistic Society of the Institute for Operations Research and Management Sciences</general><general>Institute for Operations Research and the Management Sciences</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20100501</creationdate><title>The Stochastic Multiperiod Location Transportation Problem</title><author>Klibi, Walid ; Lasalle, Francis ; Martel, Alain ; Ichoua, Soumia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-ea5074fa823525dcbc0550692682f97850afd5c075fc268ddac821dae1d93a583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Automobiles</topic><topic>Determinism</topic><topic>Exact sciences and technology</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>Heuristic</topic><topic>Heuristics</topic><topic>Learning models (Stochastic processes)</topic><topic>Location analysis</topic><topic>location problem</topic><topic>Monte Carlo method</topic><topic>Monte Carlo scenarios</topic><topic>Monte Carlo simulation</topic><topic>Neighbourhoods</topic><topic>Planning methods</topic><topic>Sample size</topic><topic>Services</topic><topic>Shipments</topic><topic>stochastic customer order process</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>stochastic programming</topic><topic>Studies</topic><topic>Taboos</topic><topic>Tabu search</topic><topic>Technology application</topic><topic>Transport economics</topic><topic>Transport infrastructure</topic><topic>Transportation</topic><topic>Transportation costs</topic><topic>Transportation industry</topic><topic>Transportation planning, management and economics</topic><topic>transportation problem</topic><topic>Transportation problem (Operations research)</topic><topic>Truck routes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klibi, Walid</creatorcontrib><creatorcontrib>Lasalle, Francis</creatorcontrib><creatorcontrib>Martel, Alain</creatorcontrib><creatorcontrib>Ichoua, Soumia</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Transportation science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klibi, Walid</au><au>Lasalle, Francis</au><au>Martel, Alain</au><au>Ichoua, Soumia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Stochastic Multiperiod Location Transportation Problem</atitle><jtitle>Transportation science</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>44</volume><issue>2</issue><spage>221</spage><epage>237</epage><pages>221-237</pages><issn>0041-1655</issn><eissn>1526-5447</eissn><coden>TRSCBJ</coden><abstract>This paper studies a stochastic multiperiod location-transportation problem (SMLTP) characterized by multiple transportation options, multiple demand periods, and a stochastic demand. We consider the determination of the number and location of the depots required to satisfy customer demand as well as the mission of these depots in terms of the subset of customers they must supply. The problem is formulated as a stochastic program with recourse, and a hierarchical heuristic solution approach is proposed. It incorporates a tabu search procedure, an approximate route length formula, and a modified procedure of Clarke and Wright (Clarke, G., J. W. Wright. 1964. Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12 568-581). Three neighbourhood exploration strategies are proposed and compared with extensive experiments based on realistic problems.</abstract><cop>Linthicum, MD</cop><pub>INFORMS</pub><doi>10.1287/trsc.1090.0307</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0041-1655
ispartof Transportation science, 2010-05, Vol.44 (2), p.221-237
issn 0041-1655
1526-5447
language eng
recordid cdi_gale_infotracmisc_A228076776
source Jstor Complete Legacy; INFORMS PubsOnLine; Business Source Complete
subjects Applied sciences
Automobiles
Determinism
Exact sciences and technology
Ground, air and sea transportation, marine construction
Heuristic
Heuristics
Learning models (Stochastic processes)
Location analysis
location problem
Monte Carlo method
Monte Carlo scenarios
Monte Carlo simulation
Neighbourhoods
Planning methods
Sample size
Services
Shipments
stochastic customer order process
Stochastic models
Stochastic processes
stochastic programming
Studies
Taboos
Tabu search
Technology application
Transport economics
Transport infrastructure
Transportation
Transportation costs
Transportation industry
Transportation planning, management and economics
transportation problem
Transportation problem (Operations research)
Truck routes
title The Stochastic Multiperiod Location Transportation Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Stochastic%20Multiperiod%20Location%20Transportation%20Problem&rft.jtitle=Transportation%20science&rft.au=Klibi,%20Walid&rft.date=2010-05-01&rft.volume=44&rft.issue=2&rft.spage=221&rft.epage=237&rft.pages=221-237&rft.issn=0041-1655&rft.eissn=1526-5447&rft.coden=TRSCBJ&rft_id=info:doi/10.1287/trsc.1090.0307&rft_dat=%3Cgale_pasca%3EA228076776%3C/gale_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=347501355&rft_id=info:pmid/&rft_galeid=A228076776&rft_jstor_id=25769493&rfr_iscdi=true