Multimodal Sentiment Analysis of Online Product Information Based on Text Mining Under the Influence of Social Media
Currently, with the dramatic increase in social media users and the greater variety of online product information, manual processing of this information is time-consuming and labour-intensive. Therefore, based on the text mining of online information, this paper analyzes the text representation meth...
Gespeichert in:
Veröffentlicht in: | Journal of organizational and end user computing 2022-01, Vol.34 (8), p.1-18 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | Journal of organizational and end user computing |
container_volume | 34 |
creator | Zeng, Xiao Zhong, Ziqi |
description | Currently, with the dramatic increase in social media users and the greater variety of online product information, manual processing of this information is time-consuming and labour-intensive. Therefore, based on the text mining of online information, this paper analyzes the text representation method of online information, discusses the long short-term memory network, and constructs an interactive attention graph convolutional network (IAGCN) model based on graph convolutional neural network (GCNN) and attention mechanism to study the multimodal sentiment analysis (MSA) of online product information. The results show that the IAGCN model improves the accuracy by 4.78% and the F1 value by 29.25% compared with the pure interactive attention network. Meanwhile, it is found that the performance of the model is optimal when the GCNN is two layers and uses syntactic position attention. This research has important practical significance for MSA of online product information in social media. |
doi_str_mv | 10.4018/JOEUC.314786 |
format | Article |
fullrecord | <record><control><sourceid>gale_igi_j</sourceid><recordid>TN_cdi_gale_infotracgeneralonefile_A759135116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759135116</galeid><sourcerecordid>A759135116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-410512f2735359f861b76d61340626aa734e711b2dfd3335785dc749e95f94e73</originalsourceid><addsrcrecordid>eNqNklGL1DAQx4soeJ6--QECPgl2bZImaR_Xcp4ru66wt88hl05rjjQ5kxbuvr1Zu3osLCKB5E_ym5nM8M-yt7hYlAWuPn7dXu2bBcWlqPiz7AKzkueswOT5URNCy5fZqxjvioKwqmAX2biZ7GgG3yqLduCSTBtaOmUfo4nId2jrrHGAvgffTnpEK9f5MKjReIc-qQgtSuIGHka0Mc64Hu1dCwGNP-CA2gmchkOandcm1dhAa9Tr7EWnbIQ3x_My23--umm-5Ovt9apZrnPNCjLmJS4YJh0RlFFWdxXHt4K3HNOy4IQrJWgJAuNb0nYtpZSJirValDXUrKvTE73M3s1574P_OUEc5Z2fQuotSlJxXjEhBH6iemVBmtTfGJQeTNRyKViNKcOYJyo_Q_XgICjrHXQmXZ_wizN8Wi0MRp8NeH8SkJgxjbVXU4xytfv232x1vf7Xx4-s9tZCDzINvNme8h9mXgcfY4BO3gczqPAocSEPNpO_bSZnmyW8mXHTm6fxzo6Sfx0l_zjqbI6S_gIuHdXx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866857771</pqid></control><display><type>article</type><title>Multimodal Sentiment Analysis of Online Product Information Based on Text Mining Under the Influence of Social Media</title><source>Alma/SFX Local Collection</source><creator>Zeng, Xiao ; Zhong, Ziqi</creator><creatorcontrib>Zeng, Xiao ; Zhong, Ziqi</creatorcontrib><description>Currently, with the dramatic increase in social media users and the greater variety of online product information, manual processing of this information is time-consuming and labour-intensive. Therefore, based on the text mining of online information, this paper analyzes the text representation method of online information, discusses the long short-term memory network, and constructs an interactive attention graph convolutional network (IAGCN) model based on graph convolutional neural network (GCNN) and attention mechanism to study the multimodal sentiment analysis (MSA) of online product information. The results show that the IAGCN model improves the accuracy by 4.78% and the F1 value by 29.25% compared with the pure interactive attention network. Meanwhile, it is found that the performance of the model is optimal when the GCNN is two layers and uses syntactic position attention. This research has important practical significance for MSA of online product information in social media.</description><identifier>ISSN: 1546-2234</identifier><identifier>EISSN: 1546-5012</identifier><identifier>DOI: 10.4018/JOEUC.314786</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Artificial neural networks ; Data mining ; Data warehousing/data mining ; Neural network ; Neural networks ; Sentiment analysis ; Social media ; User statistics</subject><ispartof>Journal of organizational and end user computing, 2022-01, Vol.34 (8), p.1-18</ispartof><rights>COPYRIGHT 2022 IGI Global</rights><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-410512f2735359f861b76d61340626aa734e711b2dfd3335785dc749e95f94e73</citedby><cites>FETCH-LOGICAL-c502t-410512f2735359f861b76d61340626aa734e711b2dfd3335785dc749e95f94e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zeng, Xiao</creatorcontrib><creatorcontrib>Zhong, Ziqi</creatorcontrib><title>Multimodal Sentiment Analysis of Online Product Information Based on Text Mining Under the Influence of Social Media</title><title>Journal of organizational and end user computing</title><addtitle>Journal of Organizational and End User Computing</addtitle><description>Currently, with the dramatic increase in social media users and the greater variety of online product information, manual processing of this information is time-consuming and labour-intensive. Therefore, based on the text mining of online information, this paper analyzes the text representation method of online information, discusses the long short-term memory network, and constructs an interactive attention graph convolutional network (IAGCN) model based on graph convolutional neural network (GCNN) and attention mechanism to study the multimodal sentiment analysis (MSA) of online product information. The results show that the IAGCN model improves the accuracy by 4.78% and the F1 value by 29.25% compared with the pure interactive attention network. Meanwhile, it is found that the performance of the model is optimal when the GCNN is two layers and uses syntactic position attention. This research has important practical significance for MSA of online product information in social media.</description><subject>Artificial neural networks</subject><subject>Data mining</subject><subject>Data warehousing/data mining</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Sentiment analysis</subject><subject>Social media</subject><subject>User statistics</subject><issn>1546-2234</issn><issn>1546-5012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNklGL1DAQx4soeJ6--QECPgl2bZImaR_Xcp4ru66wt88hl05rjjQ5kxbuvr1Zu3osLCKB5E_ym5nM8M-yt7hYlAWuPn7dXu2bBcWlqPiz7AKzkueswOT5URNCy5fZqxjvioKwqmAX2biZ7GgG3yqLduCSTBtaOmUfo4nId2jrrHGAvgffTnpEK9f5MKjReIc-qQgtSuIGHka0Mc64Hu1dCwGNP-CA2gmchkOandcm1dhAa9Tr7EWnbIQ3x_My23--umm-5Ovt9apZrnPNCjLmJS4YJh0RlFFWdxXHt4K3HNOy4IQrJWgJAuNb0nYtpZSJirValDXUrKvTE73M3s1574P_OUEc5Z2fQuotSlJxXjEhBH6iemVBmtTfGJQeTNRyKViNKcOYJyo_Q_XgICjrHXQmXZ_wizN8Wi0MRp8NeH8SkJgxjbVXU4xytfv232x1vf7Xx4-s9tZCDzINvNme8h9mXgcfY4BO3gczqPAocSEPNpO_bSZnmyW8mXHTm6fxzo6Sfx0l_zjqbI6S_gIuHdXx</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Zeng, Xiao</creator><creator>Zhong, Ziqi</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>ISN</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20220101</creationdate><title>Multimodal Sentiment Analysis of Online Product Information Based on Text Mining Under the Influence of Social Media</title><author>Zeng, Xiao ; Zhong, Ziqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-410512f2735359f861b76d61340626aa734e711b2dfd3335785dc749e95f94e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Data mining</topic><topic>Data warehousing/data mining</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Sentiment analysis</topic><topic>Social media</topic><topic>User statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Xiao</creatorcontrib><creatorcontrib>Zhong, Ziqi</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Canada</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of organizational and end user computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Xiao</au><au>Zhong, Ziqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal Sentiment Analysis of Online Product Information Based on Text Mining Under the Influence of Social Media</atitle><jtitle>Journal of organizational and end user computing</jtitle><addtitle>Journal of Organizational and End User Computing</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>34</volume><issue>8</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1546-2234</issn><eissn>1546-5012</eissn><abstract>Currently, with the dramatic increase in social media users and the greater variety of online product information, manual processing of this information is time-consuming and labour-intensive. Therefore, based on the text mining of online information, this paper analyzes the text representation method of online information, discusses the long short-term memory network, and constructs an interactive attention graph convolutional network (IAGCN) model based on graph convolutional neural network (GCNN) and attention mechanism to study the multimodal sentiment analysis (MSA) of online product information. The results show that the IAGCN model improves the accuracy by 4.78% and the F1 value by 29.25% compared with the pure interactive attention network. Meanwhile, it is found that the performance of the model is optimal when the GCNN is two layers and uses syntactic position attention. This research has important practical significance for MSA of online product information in social media.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/JOEUC.314786</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1546-2234 |
ispartof | Journal of organizational and end user computing, 2022-01, Vol.34 (8), p.1-18 |
issn | 1546-2234 1546-5012 |
language | eng |
recordid | cdi_gale_infotracgeneralonefile_A759135116 |
source | Alma/SFX Local Collection |
subjects | Artificial neural networks Data mining Data warehousing/data mining Neural network Neural networks Sentiment analysis Social media User statistics |
title | Multimodal Sentiment Analysis of Online Product Information Based on Text Mining Under the Influence of Social Media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A11%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_igi_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20Sentiment%20Analysis%20of%20Online%20Product%20Information%20Based%20on%20Text%20Mining%20Under%20the%20Influence%20of%20Social%20Media&rft.jtitle=Journal%20of%20organizational%20and%20end%20user%20computing&rft.au=Zeng,%20Xiao&rft.date=2022-01-01&rft.volume=34&rft.issue=8&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1546-2234&rft.eissn=1546-5012&rft_id=info:doi/10.4018/JOEUC.314786&rft_dat=%3Cgale_igi_j%3EA759135116%3C/gale_igi_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866857771&rft_id=info:pmid/&rft_galeid=A759135116&rfr_iscdi=true |