Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn.sub.5

With only a few exceptions that are well understood, conventional superconductivity does not coexist with long-range magnetic order (for example, ref. 1). Unconventional superconductivity, on the other hand, develops near a phase boundary separating magnetically ordered and magnetically disordered p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2006-03, Vol.440 (7080), p.65
Hauptverfasser: Park, Tuson, Ronning, F, Yuan, H.Q, Salamon, M.B, Movshovich, R, Sarrao, J.L, Thompson, J.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7080
container_start_page 65
container_title Nature (London)
container_volume 440
creator Park, Tuson
Ronning, F
Yuan, H.Q
Salamon, M.B
Movshovich, R
Sarrao, J.L
Thompson, J.D
description With only a few exceptions that are well understood, conventional superconductivity does not coexist with long-range magnetic order (for example, ref. 1). Unconventional superconductivity, on the other hand, develops near a phase boundary separating magnetically ordered and magnetically disordered phases.sup.2,3. A maximum in the superconducting transition temperature T.sub.c develops where this boundary extrapolates to zero Kelvin, suggesting that fluctuations associated with this magnetic quantum-critical point are essential for unconventional superconductivity.sup.4,5. Invariably, though, unconventional superconductivity masks the magnetic phase boundary when T < T.sub.c, preventing proof of a magnetic quantum-critical point.sup.5. Here we report specific-heat measurements of the pressure-tuned unconventional superconductor CeRhIn.sub.5 in which we find a line of quantum-phase transitions induced inside the superconducting state by an applied magnetic field. This quantum-critical line separates a phase of coexisting antiferromagnetism and superconductivity from a purely unconventional superconducting phase, and terminates at a quantum tetracritical point where the magnetic field completely suppresses superconductivity. The T [right arrow] 0 K magnetic field-pressure phase diagram of CeRhIn.sub.5 is well described with a theoretical model.sup.6,7 developed to explain field-induced magnetism in the high-T.sub.c copper oxides, but in which a clear delineation of quantum-phase boundaries has not been possible. These experiments establish a common relationship among hidden magnetism, quantum criticality and unconventional superconductivity in copper oxides and heavy-electron systems such as CeRhIn.sub.5.
doi_str_mv 10.1038/nature04571
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracgeneralonefile_A632097567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632097567</galeid><sourcerecordid>A632097567</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1747-eb0ff575f792127789da6cd949dcf7f1c67d661c1c92bb770c5dd6ef0f69344d3</originalsourceid><addsrcrecordid>eNp1zl1LwzAUBuAgCs7plX8geCfSmvQjaS9HUTcYCnMiXo00Oekibbo1qbh_b0EvNpiciwOH5305CF1TElISZ_dW-L4DkqScnqARTTgLEpbxUzQiJMoCksXsHF0490kISSlPRuhjapQCixtRWfDGNVhYhbe9sL5vsOyMN1LUxu-wsdivAa9BfO2whq4xrcWu30AnW6t66dsOF7BYz2zo-jJML9GZFrWDq789Rm-PD8tiGsxfnmbFZB5UwwM8gJJonfJU8zyiEedZrgSTKk9yJTXXVDKuGKOSyjwqS86JTJVioIlmeZwkKh6j4Le3EjWsjNWt74SswEIn6taCNsN5wuKI5DxlfPA3R7zcmO1qH4VH0DAKGiOPtt4eBAbj4dtXonduNXtdHNq7_-1k-V487-sfBeSP8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn.sub.5</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Park, Tuson ; Ronning, F ; Yuan, H.Q ; Salamon, M.B ; Movshovich, R ; Sarrao, J.L ; Thompson, J.D</creator><creatorcontrib>Park, Tuson ; Ronning, F ; Yuan, H.Q ; Salamon, M.B ; Movshovich, R ; Sarrao, J.L ; Thompson, J.D</creatorcontrib><description>With only a few exceptions that are well understood, conventional superconductivity does not coexist with long-range magnetic order (for example, ref. 1). Unconventional superconductivity, on the other hand, develops near a phase boundary separating magnetically ordered and magnetically disordered phases.sup.2,3. A maximum in the superconducting transition temperature T.sub.c develops where this boundary extrapolates to zero Kelvin, suggesting that fluctuations associated with this magnetic quantum-critical point are essential for unconventional superconductivity.sup.4,5. Invariably, though, unconventional superconductivity masks the magnetic phase boundary when T &lt; T.sub.c, preventing proof of a magnetic quantum-critical point.sup.5. Here we report specific-heat measurements of the pressure-tuned unconventional superconductor CeRhIn.sub.5 in which we find a line of quantum-phase transitions induced inside the superconducting state by an applied magnetic field. This quantum-critical line separates a phase of coexisting antiferromagnetism and superconductivity from a purely unconventional superconducting phase, and terminates at a quantum tetracritical point where the magnetic field completely suppresses superconductivity. The T [right arrow] 0 K magnetic field-pressure phase diagram of CeRhIn.sub.5 is well described with a theoretical model.sup.6,7 developed to explain field-induced magnetism in the high-T.sub.c copper oxides, but in which a clear delineation of quantum-phase boundaries has not been possible. These experiments establish a common relationship among hidden magnetism, quantum criticality and unconventional superconductivity in copper oxides and heavy-electron systems such as CeRhIn.sub.5.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature04571</identifier><language>eng</language><publisher>Nature Publishing Group</publisher><subject>Fermions ; Magnetic properties ; Physics research ; Superconductivity ; Transition metal compounds</subject><ispartof>Nature (London), 2006-03, Vol.440 (7080), p.65</ispartof><rights>COPYRIGHT 2006 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Park, Tuson</creatorcontrib><creatorcontrib>Ronning, F</creatorcontrib><creatorcontrib>Yuan, H.Q</creatorcontrib><creatorcontrib>Salamon, M.B</creatorcontrib><creatorcontrib>Movshovich, R</creatorcontrib><creatorcontrib>Sarrao, J.L</creatorcontrib><creatorcontrib>Thompson, J.D</creatorcontrib><title>Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn.sub.5</title><title>Nature (London)</title><description>With only a few exceptions that are well understood, conventional superconductivity does not coexist with long-range magnetic order (for example, ref. 1). Unconventional superconductivity, on the other hand, develops near a phase boundary separating magnetically ordered and magnetically disordered phases.sup.2,3. A maximum in the superconducting transition temperature T.sub.c develops where this boundary extrapolates to zero Kelvin, suggesting that fluctuations associated with this magnetic quantum-critical point are essential for unconventional superconductivity.sup.4,5. Invariably, though, unconventional superconductivity masks the magnetic phase boundary when T &lt; T.sub.c, preventing proof of a magnetic quantum-critical point.sup.5. Here we report specific-heat measurements of the pressure-tuned unconventional superconductor CeRhIn.sub.5 in which we find a line of quantum-phase transitions induced inside the superconducting state by an applied magnetic field. This quantum-critical line separates a phase of coexisting antiferromagnetism and superconductivity from a purely unconventional superconducting phase, and terminates at a quantum tetracritical point where the magnetic field completely suppresses superconductivity. The T [right arrow] 0 K magnetic field-pressure phase diagram of CeRhIn.sub.5 is well described with a theoretical model.sup.6,7 developed to explain field-induced magnetism in the high-T.sub.c copper oxides, but in which a clear delineation of quantum-phase boundaries has not been possible. These experiments establish a common relationship among hidden magnetism, quantum criticality and unconventional superconductivity in copper oxides and heavy-electron systems such as CeRhIn.sub.5.</description><subject>Fermions</subject><subject>Magnetic properties</subject><subject>Physics research</subject><subject>Superconductivity</subject><subject>Transition metal compounds</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1zl1LwzAUBuAgCs7plX8geCfSmvQjaS9HUTcYCnMiXo00Oekibbo1qbh_b0EvNpiciwOH5305CF1TElISZ_dW-L4DkqScnqARTTgLEpbxUzQiJMoCksXsHF0490kISSlPRuhjapQCixtRWfDGNVhYhbe9sL5vsOyMN1LUxu-wsdivAa9BfO2whq4xrcWu30AnW6t66dsOF7BYz2zo-jJML9GZFrWDq789Rm-PD8tiGsxfnmbFZB5UwwM8gJJonfJU8zyiEedZrgSTKk9yJTXXVDKuGKOSyjwqS86JTJVioIlmeZwkKh6j4Le3EjWsjNWt74SswEIn6taCNsN5wuKI5DxlfPA3R7zcmO1qH4VH0DAKGiOPtt4eBAbj4dtXonduNXtdHNq7_-1k-V487-sfBeSP8g</recordid><startdate>20060302</startdate><enddate>20060302</enddate><creator>Park, Tuson</creator><creator>Ronning, F</creator><creator>Yuan, H.Q</creator><creator>Salamon, M.B</creator><creator>Movshovich, R</creator><creator>Sarrao, J.L</creator><creator>Thompson, J.D</creator><general>Nature Publishing Group</general><scope>ATWCN</scope></search><sort><creationdate>20060302</creationdate><title>Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn.sub.5</title><author>Park, Tuson ; Ronning, F ; Yuan, H.Q ; Salamon, M.B ; Movshovich, R ; Sarrao, J.L ; Thompson, J.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1747-eb0ff575f792127789da6cd949dcf7f1c67d661c1c92bb770c5dd6ef0f69344d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Fermions</topic><topic>Magnetic properties</topic><topic>Physics research</topic><topic>Superconductivity</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Tuson</creatorcontrib><creatorcontrib>Ronning, F</creatorcontrib><creatorcontrib>Yuan, H.Q</creatorcontrib><creatorcontrib>Salamon, M.B</creatorcontrib><creatorcontrib>Movshovich, R</creatorcontrib><creatorcontrib>Sarrao, J.L</creatorcontrib><creatorcontrib>Thompson, J.D</creatorcontrib><collection>Gale In Context: Middle School</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Tuson</au><au>Ronning, F</au><au>Yuan, H.Q</au><au>Salamon, M.B</au><au>Movshovich, R</au><au>Sarrao, J.L</au><au>Thompson, J.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn.sub.5</atitle><jtitle>Nature (London)</jtitle><date>2006-03-02</date><risdate>2006</risdate><volume>440</volume><issue>7080</issue><spage>65</spage><pages>65-</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>With only a few exceptions that are well understood, conventional superconductivity does not coexist with long-range magnetic order (for example, ref. 1). Unconventional superconductivity, on the other hand, develops near a phase boundary separating magnetically ordered and magnetically disordered phases.sup.2,3. A maximum in the superconducting transition temperature T.sub.c develops where this boundary extrapolates to zero Kelvin, suggesting that fluctuations associated with this magnetic quantum-critical point are essential for unconventional superconductivity.sup.4,5. Invariably, though, unconventional superconductivity masks the magnetic phase boundary when T &lt; T.sub.c, preventing proof of a magnetic quantum-critical point.sup.5. Here we report specific-heat measurements of the pressure-tuned unconventional superconductor CeRhIn.sub.5 in which we find a line of quantum-phase transitions induced inside the superconducting state by an applied magnetic field. This quantum-critical line separates a phase of coexisting antiferromagnetism and superconductivity from a purely unconventional superconducting phase, and terminates at a quantum tetracritical point where the magnetic field completely suppresses superconductivity. The T [right arrow] 0 K magnetic field-pressure phase diagram of CeRhIn.sub.5 is well described with a theoretical model.sup.6,7 developed to explain field-induced magnetism in the high-T.sub.c copper oxides, but in which a clear delineation of quantum-phase boundaries has not been possible. These experiments establish a common relationship among hidden magnetism, quantum criticality and unconventional superconductivity in copper oxides and heavy-electron systems such as CeRhIn.sub.5.</abstract><pub>Nature Publishing Group</pub><doi>10.1038/nature04571</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2006-03, Vol.440 (7080), p.65
issn 0028-0836
1476-4687
language eng
recordid cdi_gale_infotracgeneralonefile_A632097567
source Nature; Alma/SFX Local Collection
subjects Fermions
Magnetic properties
Physics research
Superconductivity
Transition metal compounds
title Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn.sub.5
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hidden%20magnetism%20and%20quantum%20criticality%20in%20the%20heavy%20fermion%20superconductor%20CeRhIn.sub.5&rft.jtitle=Nature%20(London)&rft.au=Park,%20Tuson&rft.date=2006-03-02&rft.volume=440&rft.issue=7080&rft.spage=65&rft.pages=65-&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/nature04571&rft_dat=%3Cgale%3EA632097567%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A632097567&rfr_iscdi=true