Interpretation of piezocone penetration and dissipation tests in sensitive Leda clay at Gloucester test site

A modified piezocone penetration test (CPTu) analytical solution based on spherical cavity expansion and critical state soil mechanics (SCE–CSSM) is employed for assessing yield stress, undrained shear strength, and flow parameters in sensitive Leda clay at the Gloucester test site. For sensitive an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian geotechnical journal 2018-12, Vol.55 (12), p.1781-1794
Hauptverfasser: Agaiby, Shehab S, Mayne, Paul W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1794
container_issue 12
container_start_page 1781
container_title Canadian geotechnical journal
container_volume 55
creator Agaiby, Shehab S
Mayne, Paul W
description A modified piezocone penetration test (CPTu) analytical solution based on spherical cavity expansion and critical state soil mechanics (SCE–CSSM) is employed for assessing yield stress, undrained shear strength, and flow parameters in sensitive Leda clay at the Gloucester test site. For sensitive and structured clays, the formulation relies on the mobilized effective stress friction angle ( ) defined at two parts of the stress–strain curve: (i) peak stress ( ) and (ii) maximum obliquity ( ). Input parameters for assessing the overconsolidation ratio ( , where is preconsolidation stress and is current effective vertical stress) from CPTu results include: undrained rigidity index (I R = G/s u , where G is shear modulus and s u is undrained shear strength), plastic volumetric strain potential (Λ = 1 – (C s /C c ), where C s is swelling index and C c is virgin compression index), and effective friction angles ( and ). A direct CPTu means of assessing the undrained rigidity index in a reliable manner is also developed that gives the N kt cone factor and matches profiles of undrained shear strength from triaxial compression tests (s uTC ). The modified solution is also implemented on two additional sites: a sensitive-quick clay in Norway and structured varved clay from New England. Interpretations of the coefficient of consolidation and permeability from pore-water pressure dissipation tests at Gloucester are evaluated using the SCE–CSSM formulation and shown to be comparable with independent laboratory and field tests.
doi_str_mv 10.1139/cgj-2017-0388
format Article
fullrecord <record><control><sourceid>gale_nrcre</sourceid><recordid>TN_cdi_gale_infotracgeneralonefile_A563953192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A563953192</galeid><sourcerecordid>A563953192</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529t-1d17949a39162609476a6ab7545feb38648471b62c59d44ab60fc0f34280e5763</originalsourceid><addsrcrecordid>eNqV0s1LHDEUAPBQWnCrPfYe9NTD2HxNZnIU8WNhqWDbc8hm3qxZZpMxyYr2r2_WFawwUCSHfP3eeyQ8hL5SckopV9_tal0xQpuK8Lb9gGaUkbaShJKPaEZIWXPZiAP0OaU1IVQIxmZomPsMcYyQTXbB49Dj0cGfYIMHPIKHHPcXxne4cym5cb_PkHLCzuMEPrnsHgAvoDPYDuYJm4yvhrC1xUB8prgYOEKfejMk-PIyH6Lflxe_zq-rxc3V_PxsUZmaqVzRjjZKKMMVlUwSJRpppFk2tah7WPJWilY0dCmZrVUnhFlK0lvSc8FaAnUj-SE62ecdY7jflup6HbbRl5KaUSXqhhLFXtXKDKCd70N5q924ZPVZLbmqOX1W1YRalZ-JZiif1Lty_MYfT3g7unv9LzqdQGV0sHF2Muu3NwHFZHjMK7NNSc9_3r7D_ph8nY0hpQi9HqPbmPikKdG7ptKlqfSuqfSuqYone--jjZDARHv3n5C_L1HK0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194571092</pqid></control><display><type>article</type><title>Interpretation of piezocone penetration and dissipation tests in sensitive Leda clay at Gloucester test site</title><source>NRC Research Press</source><source>Alma/SFX Local Collection</source><creator>Agaiby, Shehab S ; Mayne, Paul W</creator><creatorcontrib>Agaiby, Shehab S ; Mayne, Paul W</creatorcontrib><description>A modified piezocone penetration test (CPTu) analytical solution based on spherical cavity expansion and critical state soil mechanics (SCE–CSSM) is employed for assessing yield stress, undrained shear strength, and flow parameters in sensitive Leda clay at the Gloucester test site. For sensitive and structured clays, the formulation relies on the mobilized effective stress friction angle ( ) defined at two parts of the stress–strain curve: (i) peak stress ( ) and (ii) maximum obliquity ( ). Input parameters for assessing the overconsolidation ratio ( , where is preconsolidation stress and is current effective vertical stress) from CPTu results include: undrained rigidity index (I R = G/s u , where G is shear modulus and s u is undrained shear strength), plastic volumetric strain potential (Λ = 1 – (C s /C c ), where C s is swelling index and C c is virgin compression index), and effective friction angles ( and ). A direct CPTu means of assessing the undrained rigidity index in a reliable manner is also developed that gives the N kt cone factor and matches profiles of undrained shear strength from triaxial compression tests (s uTC ). The modified solution is also implemented on two additional sites: a sensitive-quick clay in Norway and structured varved clay from New England. Interpretations of the coefficient of consolidation and permeability from pore-water pressure dissipation tests at Gloucester are evaluated using the SCE–CSSM formulation and shown to be comparable with independent laboratory and field tests.</description><identifier>ISSN: 0008-3674</identifier><identifier>EISSN: 1208-6010</identifier><identifier>DOI: 10.1139/cgj-2017-0388</identifier><language>eng</language><publisher>Ottawa: NRC Research Press</publisher><subject>argiles ; argiles sensibles ; Cavity expansion ; Clay ; clays ; Compression ; Compression index ; Compressive strength ; cone penetrometer ; Consolidation ; contraintes d’élasticité ; Dynamic testing (Engineering) ; Effective stress ; essais in situ ; Field tests ; Friction ; Hydrostatic pressure ; in situ testing ; Leda ; Mathematical analysis ; Mechanical properties ; Membrane permeability ; Methods ; Overconsolidation ; overconsolidation ratio ; Parameter sensitivity ; Parameters ; Penetration ; Permeability ; piezocone ; piézocône ; Pore water ; Pore water pressure ; preconsolidation ; Profiles ; préconsolidation ; pénétromètre à cône ; Quick clays ; rapport de surconsolidation ; Rigidity ; sensitive clays ; Shear modulus ; Shear strength ; Soil ; Soil mechanics ; Soil permeability ; Soil sampling ; Strain ; Stress-strain curves ; Testing ; Tests ; Triaxial compression tests ; Volumetric strain ; Water ; Water pressure ; Yield stress ; yield stresses</subject><ispartof>Canadian geotechnical journal, 2018-12, Vol.55 (12), p.1781-1794</ispartof><rights>COPYRIGHT 2018 NRC Research Press</rights><rights>2018 Published by NRC Research Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a529t-1d17949a39162609476a6ab7545feb38648471b62c59d44ab60fc0f34280e5763</citedby><cites>FETCH-LOGICAL-a529t-1d17949a39162609476a6ab7545feb38648471b62c59d44ab60fc0f34280e5763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://cdnsciencepub.com/doi/pdf/10.1139/cgj-2017-0388$$EPDF$$P50$$Gnrcresearch$$H</linktopdf><linktohtml>$$Uhttps://cdnsciencepub.com/doi/full/10.1139/cgj-2017-0388$$EHTML$$P50$$Gnrcresearch$$H</linktohtml><link.rule.ids>314,780,784,2932,27924,27925,64428,65234</link.rule.ids></links><search><creatorcontrib>Agaiby, Shehab S</creatorcontrib><creatorcontrib>Mayne, Paul W</creatorcontrib><title>Interpretation of piezocone penetration and dissipation tests in sensitive Leda clay at Gloucester test site</title><title>Canadian geotechnical journal</title><description>A modified piezocone penetration test (CPTu) analytical solution based on spherical cavity expansion and critical state soil mechanics (SCE–CSSM) is employed for assessing yield stress, undrained shear strength, and flow parameters in sensitive Leda clay at the Gloucester test site. For sensitive and structured clays, the formulation relies on the mobilized effective stress friction angle ( ) defined at two parts of the stress–strain curve: (i) peak stress ( ) and (ii) maximum obliquity ( ). Input parameters for assessing the overconsolidation ratio ( , where is preconsolidation stress and is current effective vertical stress) from CPTu results include: undrained rigidity index (I R = G/s u , where G is shear modulus and s u is undrained shear strength), plastic volumetric strain potential (Λ = 1 – (C s /C c ), where C s is swelling index and C c is virgin compression index), and effective friction angles ( and ). A direct CPTu means of assessing the undrained rigidity index in a reliable manner is also developed that gives the N kt cone factor and matches profiles of undrained shear strength from triaxial compression tests (s uTC ). The modified solution is also implemented on two additional sites: a sensitive-quick clay in Norway and structured varved clay from New England. Interpretations of the coefficient of consolidation and permeability from pore-water pressure dissipation tests at Gloucester are evaluated using the SCE–CSSM formulation and shown to be comparable with independent laboratory and field tests.</description><subject>argiles</subject><subject>argiles sensibles</subject><subject>Cavity expansion</subject><subject>Clay</subject><subject>clays</subject><subject>Compression</subject><subject>Compression index</subject><subject>Compressive strength</subject><subject>cone penetrometer</subject><subject>Consolidation</subject><subject>contraintes d’élasticité</subject><subject>Dynamic testing (Engineering)</subject><subject>Effective stress</subject><subject>essais in situ</subject><subject>Field tests</subject><subject>Friction</subject><subject>Hydrostatic pressure</subject><subject>in situ testing</subject><subject>Leda</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Membrane permeability</subject><subject>Methods</subject><subject>Overconsolidation</subject><subject>overconsolidation ratio</subject><subject>Parameter sensitivity</subject><subject>Parameters</subject><subject>Penetration</subject><subject>Permeability</subject><subject>piezocone</subject><subject>piézocône</subject><subject>Pore water</subject><subject>Pore water pressure</subject><subject>preconsolidation</subject><subject>Profiles</subject><subject>préconsolidation</subject><subject>pénétromètre à cône</subject><subject>Quick clays</subject><subject>rapport de surconsolidation</subject><subject>Rigidity</subject><subject>sensitive clays</subject><subject>Shear modulus</subject><subject>Shear strength</subject><subject>Soil</subject><subject>Soil mechanics</subject><subject>Soil permeability</subject><subject>Soil sampling</subject><subject>Strain</subject><subject>Stress-strain curves</subject><subject>Testing</subject><subject>Tests</subject><subject>Triaxial compression tests</subject><subject>Volumetric strain</subject><subject>Water</subject><subject>Water pressure</subject><subject>Yield stress</subject><subject>yield stresses</subject><issn>0008-3674</issn><issn>1208-6010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqV0s1LHDEUAPBQWnCrPfYe9NTD2HxNZnIU8WNhqWDbc8hm3qxZZpMxyYr2r2_WFawwUCSHfP3eeyQ8hL5SckopV9_tal0xQpuK8Lb9gGaUkbaShJKPaEZIWXPZiAP0OaU1IVQIxmZomPsMcYyQTXbB49Dj0cGfYIMHPIKHHPcXxne4cym5cb_PkHLCzuMEPrnsHgAvoDPYDuYJm4yvhrC1xUB8prgYOEKfejMk-PIyH6Lflxe_zq-rxc3V_PxsUZmaqVzRjjZKKMMVlUwSJRpppFk2tah7WPJWilY0dCmZrVUnhFlK0lvSc8FaAnUj-SE62ecdY7jflup6HbbRl5KaUSXqhhLFXtXKDKCd70N5q924ZPVZLbmqOX1W1YRalZ-JZiif1Lty_MYfT3g7unv9LzqdQGV0sHF2Muu3NwHFZHjMK7NNSc9_3r7D_ph8nY0hpQi9HqPbmPikKdG7ptKlqfSuqfSuqYone--jjZDARHv3n5C_L1HK0Q</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Agaiby, Shehab S</creator><creator>Mayne, Paul W</creator><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>20181201</creationdate><title>Interpretation of piezocone penetration and dissipation tests in sensitive Leda clay at Gloucester test site</title><author>Agaiby, Shehab S ; Mayne, Paul W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529t-1d17949a39162609476a6ab7545feb38648471b62c59d44ab60fc0f34280e5763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>argiles</topic><topic>argiles sensibles</topic><topic>Cavity expansion</topic><topic>Clay</topic><topic>clays</topic><topic>Compression</topic><topic>Compression index</topic><topic>Compressive strength</topic><topic>cone penetrometer</topic><topic>Consolidation</topic><topic>contraintes d’élasticité</topic><topic>Dynamic testing (Engineering)</topic><topic>Effective stress</topic><topic>essais in situ</topic><topic>Field tests</topic><topic>Friction</topic><topic>Hydrostatic pressure</topic><topic>in situ testing</topic><topic>Leda</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Membrane permeability</topic><topic>Methods</topic><topic>Overconsolidation</topic><topic>overconsolidation ratio</topic><topic>Parameter sensitivity</topic><topic>Parameters</topic><topic>Penetration</topic><topic>Permeability</topic><topic>piezocone</topic><topic>piézocône</topic><topic>Pore water</topic><topic>Pore water pressure</topic><topic>preconsolidation</topic><topic>Profiles</topic><topic>préconsolidation</topic><topic>pénétromètre à cône</topic><topic>Quick clays</topic><topic>rapport de surconsolidation</topic><topic>Rigidity</topic><topic>sensitive clays</topic><topic>Shear modulus</topic><topic>Shear strength</topic><topic>Soil</topic><topic>Soil mechanics</topic><topic>Soil permeability</topic><topic>Soil sampling</topic><topic>Strain</topic><topic>Stress-strain curves</topic><topic>Testing</topic><topic>Tests</topic><topic>Triaxial compression tests</topic><topic>Volumetric strain</topic><topic>Water</topic><topic>Water pressure</topic><topic>Yield stress</topic><topic>yield stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agaiby, Shehab S</creatorcontrib><creatorcontrib>Mayne, Paul W</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Canadian geotechnical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agaiby, Shehab S</au><au>Mayne, Paul W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpretation of piezocone penetration and dissipation tests in sensitive Leda clay at Gloucester test site</atitle><jtitle>Canadian geotechnical journal</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>55</volume><issue>12</issue><spage>1781</spage><epage>1794</epage><pages>1781-1794</pages><issn>0008-3674</issn><eissn>1208-6010</eissn><abstract>A modified piezocone penetration test (CPTu) analytical solution based on spherical cavity expansion and critical state soil mechanics (SCE–CSSM) is employed for assessing yield stress, undrained shear strength, and flow parameters in sensitive Leda clay at the Gloucester test site. For sensitive and structured clays, the formulation relies on the mobilized effective stress friction angle ( ) defined at two parts of the stress–strain curve: (i) peak stress ( ) and (ii) maximum obliquity ( ). Input parameters for assessing the overconsolidation ratio ( , where is preconsolidation stress and is current effective vertical stress) from CPTu results include: undrained rigidity index (I R = G/s u , where G is shear modulus and s u is undrained shear strength), plastic volumetric strain potential (Λ = 1 – (C s /C c ), where C s is swelling index and C c is virgin compression index), and effective friction angles ( and ). A direct CPTu means of assessing the undrained rigidity index in a reliable manner is also developed that gives the N kt cone factor and matches profiles of undrained shear strength from triaxial compression tests (s uTC ). The modified solution is also implemented on two additional sites: a sensitive-quick clay in Norway and structured varved clay from New England. Interpretations of the coefficient of consolidation and permeability from pore-water pressure dissipation tests at Gloucester are evaluated using the SCE–CSSM formulation and shown to be comparable with independent laboratory and field tests.</abstract><cop>Ottawa</cop><pub>NRC Research Press</pub><doi>10.1139/cgj-2017-0388</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-3674
ispartof Canadian geotechnical journal, 2018-12, Vol.55 (12), p.1781-1794
issn 0008-3674
1208-6010
language eng
recordid cdi_gale_infotracgeneralonefile_A563953192
source NRC Research Press; Alma/SFX Local Collection
subjects argiles
argiles sensibles
Cavity expansion
Clay
clays
Compression
Compression index
Compressive strength
cone penetrometer
Consolidation
contraintes d’élasticité
Dynamic testing (Engineering)
Effective stress
essais in situ
Field tests
Friction
Hydrostatic pressure
in situ testing
Leda
Mathematical analysis
Mechanical properties
Membrane permeability
Methods
Overconsolidation
overconsolidation ratio
Parameter sensitivity
Parameters
Penetration
Permeability
piezocone
piézocône
Pore water
Pore water pressure
preconsolidation
Profiles
préconsolidation
pénétromètre à cône
Quick clays
rapport de surconsolidation
Rigidity
sensitive clays
Shear modulus
Shear strength
Soil
Soil mechanics
Soil permeability
Soil sampling
Strain
Stress-strain curves
Testing
Tests
Triaxial compression tests
Volumetric strain
Water
Water pressure
Yield stress
yield stresses
title Interpretation of piezocone penetration and dissipation tests in sensitive Leda clay at Gloucester test site
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_nrcre&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpretation%20of%20piezocone%20penetration%20and%20dissipation%20tests%20in%20sensitive%20Leda%20clay%20at%20Gloucester%20test%20site&rft.jtitle=Canadian%20geotechnical%20journal&rft.au=Agaiby,%20Shehab%20S&rft.date=2018-12-01&rft.volume=55&rft.issue=12&rft.spage=1781&rft.epage=1794&rft.pages=1781-1794&rft.issn=0008-3674&rft.eissn=1208-6010&rft_id=info:doi/10.1139/cgj-2017-0388&rft_dat=%3Cgale_nrcre%3EA563953192%3C/gale_nrcre%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194571092&rft_id=info:pmid/&rft_galeid=A563953192&rfr_iscdi=true