Interpretation of piezocone penetration and dissipation tests in sensitive Leda clay at Gloucester test site
A modified piezocone penetration test (CPTu) analytical solution based on spherical cavity expansion and critical state soil mechanics (SCE–CSSM) is employed for assessing yield stress, undrained shear strength, and flow parameters in sensitive Leda clay at the Gloucester test site. For sensitive an...
Gespeichert in:
Veröffentlicht in: | Canadian geotechnical journal 2018-12, Vol.55 (12), p.1781-1794 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1794 |
---|---|
container_issue | 12 |
container_start_page | 1781 |
container_title | Canadian geotechnical journal |
container_volume | 55 |
creator | Agaiby, Shehab S Mayne, Paul W |
description | A modified piezocone penetration test (CPTu) analytical solution based on spherical cavity expansion and critical state soil mechanics (SCE–CSSM) is employed for assessing yield stress, undrained shear strength, and flow parameters in sensitive Leda clay at the Gloucester test site. For sensitive and structured clays, the formulation relies on the mobilized effective stress friction angle (
) defined at two parts of the stress–strain curve: (i) peak stress (
) and (ii) maximum obliquity (
). Input parameters for assessing the overconsolidation ratio (
, where
is preconsolidation stress and
is current effective vertical stress) from CPTu results include: undrained rigidity index (I
R
= G/s
u
, where G is shear modulus and s
u
is undrained shear strength), plastic volumetric strain potential (Λ = 1 – (C
s
/C
c
), where C
s
is swelling index and C
c
is virgin compression index), and effective friction angles (
and
). A direct CPTu means of assessing the undrained rigidity index in a reliable manner is also developed that gives the N
kt
cone factor and matches profiles of undrained shear strength from triaxial compression tests (s
uTC
). The modified solution is also implemented on two additional sites: a sensitive-quick clay in Norway and structured varved clay from New England. Interpretations of the coefficient of consolidation and permeability from pore-water pressure dissipation tests at Gloucester are evaluated using the SCE–CSSM formulation and shown to be comparable with independent laboratory and field tests. |
doi_str_mv | 10.1139/cgj-2017-0388 |
format | Article |
fullrecord | <record><control><sourceid>gale_nrcre</sourceid><recordid>TN_cdi_gale_infotracgeneralonefile_A563953192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A563953192</galeid><sourcerecordid>A563953192</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529t-1d17949a39162609476a6ab7545feb38648471b62c59d44ab60fc0f34280e5763</originalsourceid><addsrcrecordid>eNqV0s1LHDEUAPBQWnCrPfYe9NTD2HxNZnIU8WNhqWDbc8hm3qxZZpMxyYr2r2_WFawwUCSHfP3eeyQ8hL5SckopV9_tal0xQpuK8Lb9gGaUkbaShJKPaEZIWXPZiAP0OaU1IVQIxmZomPsMcYyQTXbB49Dj0cGfYIMHPIKHHPcXxne4cym5cb_PkHLCzuMEPrnsHgAvoDPYDuYJm4yvhrC1xUB8prgYOEKfejMk-PIyH6Lflxe_zq-rxc3V_PxsUZmaqVzRjjZKKMMVlUwSJRpppFk2tah7WPJWilY0dCmZrVUnhFlK0lvSc8FaAnUj-SE62ecdY7jflup6HbbRl5KaUSXqhhLFXtXKDKCd70N5q924ZPVZLbmqOX1W1YRalZ-JZiif1Lty_MYfT3g7unv9LzqdQGV0sHF2Muu3NwHFZHjMK7NNSc9_3r7D_ph8nY0hpQi9HqPbmPikKdG7ptKlqfSuqfSuqYone--jjZDARHv3n5C_L1HK0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194571092</pqid></control><display><type>article</type><title>Interpretation of piezocone penetration and dissipation tests in sensitive Leda clay at Gloucester test site</title><source>NRC Research Press</source><source>Alma/SFX Local Collection</source><creator>Agaiby, Shehab S ; Mayne, Paul W</creator><creatorcontrib>Agaiby, Shehab S ; Mayne, Paul W</creatorcontrib><description>A modified piezocone penetration test (CPTu) analytical solution based on spherical cavity expansion and critical state soil mechanics (SCE–CSSM) is employed for assessing yield stress, undrained shear strength, and flow parameters in sensitive Leda clay at the Gloucester test site. For sensitive and structured clays, the formulation relies on the mobilized effective stress friction angle (
) defined at two parts of the stress–strain curve: (i) peak stress (
) and (ii) maximum obliquity (
). Input parameters for assessing the overconsolidation ratio (
, where
is preconsolidation stress and
is current effective vertical stress) from CPTu results include: undrained rigidity index (I
R
= G/s
u
, where G is shear modulus and s
u
is undrained shear strength), plastic volumetric strain potential (Λ = 1 – (C
s
/C
c
), where C
s
is swelling index and C
c
is virgin compression index), and effective friction angles (
and
). A direct CPTu means of assessing the undrained rigidity index in a reliable manner is also developed that gives the N
kt
cone factor and matches profiles of undrained shear strength from triaxial compression tests (s
uTC
). The modified solution is also implemented on two additional sites: a sensitive-quick clay in Norway and structured varved clay from New England. Interpretations of the coefficient of consolidation and permeability from pore-water pressure dissipation tests at Gloucester are evaluated using the SCE–CSSM formulation and shown to be comparable with independent laboratory and field tests.</description><identifier>ISSN: 0008-3674</identifier><identifier>EISSN: 1208-6010</identifier><identifier>DOI: 10.1139/cgj-2017-0388</identifier><language>eng</language><publisher>Ottawa: NRC Research Press</publisher><subject>argiles ; argiles sensibles ; Cavity expansion ; Clay ; clays ; Compression ; Compression index ; Compressive strength ; cone penetrometer ; Consolidation ; contraintes d’élasticité ; Dynamic testing (Engineering) ; Effective stress ; essais in situ ; Field tests ; Friction ; Hydrostatic pressure ; in situ testing ; Leda ; Mathematical analysis ; Mechanical properties ; Membrane permeability ; Methods ; Overconsolidation ; overconsolidation ratio ; Parameter sensitivity ; Parameters ; Penetration ; Permeability ; piezocone ; piézocône ; Pore water ; Pore water pressure ; preconsolidation ; Profiles ; préconsolidation ; pénétromètre à cône ; Quick clays ; rapport de surconsolidation ; Rigidity ; sensitive clays ; Shear modulus ; Shear strength ; Soil ; Soil mechanics ; Soil permeability ; Soil sampling ; Strain ; Stress-strain curves ; Testing ; Tests ; Triaxial compression tests ; Volumetric strain ; Water ; Water pressure ; Yield stress ; yield stresses</subject><ispartof>Canadian geotechnical journal, 2018-12, Vol.55 (12), p.1781-1794</ispartof><rights>COPYRIGHT 2018 NRC Research Press</rights><rights>2018 Published by NRC Research Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a529t-1d17949a39162609476a6ab7545feb38648471b62c59d44ab60fc0f34280e5763</citedby><cites>FETCH-LOGICAL-a529t-1d17949a39162609476a6ab7545feb38648471b62c59d44ab60fc0f34280e5763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://cdnsciencepub.com/doi/pdf/10.1139/cgj-2017-0388$$EPDF$$P50$$Gnrcresearch$$H</linktopdf><linktohtml>$$Uhttps://cdnsciencepub.com/doi/full/10.1139/cgj-2017-0388$$EHTML$$P50$$Gnrcresearch$$H</linktohtml><link.rule.ids>314,780,784,2932,27924,27925,64428,65234</link.rule.ids></links><search><creatorcontrib>Agaiby, Shehab S</creatorcontrib><creatorcontrib>Mayne, Paul W</creatorcontrib><title>Interpretation of piezocone penetration and dissipation tests in sensitive Leda clay at Gloucester test site</title><title>Canadian geotechnical journal</title><description>A modified piezocone penetration test (CPTu) analytical solution based on spherical cavity expansion and critical state soil mechanics (SCE–CSSM) is employed for assessing yield stress, undrained shear strength, and flow parameters in sensitive Leda clay at the Gloucester test site. For sensitive and structured clays, the formulation relies on the mobilized effective stress friction angle (
) defined at two parts of the stress–strain curve: (i) peak stress (
) and (ii) maximum obliquity (
). Input parameters for assessing the overconsolidation ratio (
, where
is preconsolidation stress and
is current effective vertical stress) from CPTu results include: undrained rigidity index (I
R
= G/s
u
, where G is shear modulus and s
u
is undrained shear strength), plastic volumetric strain potential (Λ = 1 – (C
s
/C
c
), where C
s
is swelling index and C
c
is virgin compression index), and effective friction angles (
and
). A direct CPTu means of assessing the undrained rigidity index in a reliable manner is also developed that gives the N
kt
cone factor and matches profiles of undrained shear strength from triaxial compression tests (s
uTC
). The modified solution is also implemented on two additional sites: a sensitive-quick clay in Norway and structured varved clay from New England. Interpretations of the coefficient of consolidation and permeability from pore-water pressure dissipation tests at Gloucester are evaluated using the SCE–CSSM formulation and shown to be comparable with independent laboratory and field tests.</description><subject>argiles</subject><subject>argiles sensibles</subject><subject>Cavity expansion</subject><subject>Clay</subject><subject>clays</subject><subject>Compression</subject><subject>Compression index</subject><subject>Compressive strength</subject><subject>cone penetrometer</subject><subject>Consolidation</subject><subject>contraintes d’élasticité</subject><subject>Dynamic testing (Engineering)</subject><subject>Effective stress</subject><subject>essais in situ</subject><subject>Field tests</subject><subject>Friction</subject><subject>Hydrostatic pressure</subject><subject>in situ testing</subject><subject>Leda</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Membrane permeability</subject><subject>Methods</subject><subject>Overconsolidation</subject><subject>overconsolidation ratio</subject><subject>Parameter sensitivity</subject><subject>Parameters</subject><subject>Penetration</subject><subject>Permeability</subject><subject>piezocone</subject><subject>piézocône</subject><subject>Pore water</subject><subject>Pore water pressure</subject><subject>preconsolidation</subject><subject>Profiles</subject><subject>préconsolidation</subject><subject>pénétromètre à cône</subject><subject>Quick clays</subject><subject>rapport de surconsolidation</subject><subject>Rigidity</subject><subject>sensitive clays</subject><subject>Shear modulus</subject><subject>Shear strength</subject><subject>Soil</subject><subject>Soil mechanics</subject><subject>Soil permeability</subject><subject>Soil sampling</subject><subject>Strain</subject><subject>Stress-strain curves</subject><subject>Testing</subject><subject>Tests</subject><subject>Triaxial compression tests</subject><subject>Volumetric strain</subject><subject>Water</subject><subject>Water pressure</subject><subject>Yield stress</subject><subject>yield stresses</subject><issn>0008-3674</issn><issn>1208-6010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqV0s1LHDEUAPBQWnCrPfYe9NTD2HxNZnIU8WNhqWDbc8hm3qxZZpMxyYr2r2_WFawwUCSHfP3eeyQ8hL5SckopV9_tal0xQpuK8Lb9gGaUkbaShJKPaEZIWXPZiAP0OaU1IVQIxmZomPsMcYyQTXbB49Dj0cGfYIMHPIKHHPcXxne4cym5cb_PkHLCzuMEPrnsHgAvoDPYDuYJm4yvhrC1xUB8prgYOEKfejMk-PIyH6Lflxe_zq-rxc3V_PxsUZmaqVzRjjZKKMMVlUwSJRpppFk2tah7WPJWilY0dCmZrVUnhFlK0lvSc8FaAnUj-SE62ecdY7jflup6HbbRl5KaUSXqhhLFXtXKDKCd70N5q924ZPVZLbmqOX1W1YRalZ-JZiif1Lty_MYfT3g7unv9LzqdQGV0sHF2Muu3NwHFZHjMK7NNSc9_3r7D_ph8nY0hpQi9HqPbmPikKdG7ptKlqfSuqfSuqYone--jjZDARHv3n5C_L1HK0Q</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Agaiby, Shehab S</creator><creator>Mayne, Paul W</creator><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>20181201</creationdate><title>Interpretation of piezocone penetration and dissipation tests in sensitive Leda clay at Gloucester test site</title><author>Agaiby, Shehab S ; Mayne, Paul W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529t-1d17949a39162609476a6ab7545feb38648471b62c59d44ab60fc0f34280e5763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>argiles</topic><topic>argiles sensibles</topic><topic>Cavity expansion</topic><topic>Clay</topic><topic>clays</topic><topic>Compression</topic><topic>Compression index</topic><topic>Compressive strength</topic><topic>cone penetrometer</topic><topic>Consolidation</topic><topic>contraintes d’élasticité</topic><topic>Dynamic testing (Engineering)</topic><topic>Effective stress</topic><topic>essais in situ</topic><topic>Field tests</topic><topic>Friction</topic><topic>Hydrostatic pressure</topic><topic>in situ testing</topic><topic>Leda</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Membrane permeability</topic><topic>Methods</topic><topic>Overconsolidation</topic><topic>overconsolidation ratio</topic><topic>Parameter sensitivity</topic><topic>Parameters</topic><topic>Penetration</topic><topic>Permeability</topic><topic>piezocone</topic><topic>piézocône</topic><topic>Pore water</topic><topic>Pore water pressure</topic><topic>preconsolidation</topic><topic>Profiles</topic><topic>préconsolidation</topic><topic>pénétromètre à cône</topic><topic>Quick clays</topic><topic>rapport de surconsolidation</topic><topic>Rigidity</topic><topic>sensitive clays</topic><topic>Shear modulus</topic><topic>Shear strength</topic><topic>Soil</topic><topic>Soil mechanics</topic><topic>Soil permeability</topic><topic>Soil sampling</topic><topic>Strain</topic><topic>Stress-strain curves</topic><topic>Testing</topic><topic>Tests</topic><topic>Triaxial compression tests</topic><topic>Volumetric strain</topic><topic>Water</topic><topic>Water pressure</topic><topic>Yield stress</topic><topic>yield stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agaiby, Shehab S</creatorcontrib><creatorcontrib>Mayne, Paul W</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Canadian geotechnical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agaiby, Shehab S</au><au>Mayne, Paul W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpretation of piezocone penetration and dissipation tests in sensitive Leda clay at Gloucester test site</atitle><jtitle>Canadian geotechnical journal</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>55</volume><issue>12</issue><spage>1781</spage><epage>1794</epage><pages>1781-1794</pages><issn>0008-3674</issn><eissn>1208-6010</eissn><abstract>A modified piezocone penetration test (CPTu) analytical solution based on spherical cavity expansion and critical state soil mechanics (SCE–CSSM) is employed for assessing yield stress, undrained shear strength, and flow parameters in sensitive Leda clay at the Gloucester test site. For sensitive and structured clays, the formulation relies on the mobilized effective stress friction angle (
) defined at two parts of the stress–strain curve: (i) peak stress (
) and (ii) maximum obliquity (
). Input parameters for assessing the overconsolidation ratio (
, where
is preconsolidation stress and
is current effective vertical stress) from CPTu results include: undrained rigidity index (I
R
= G/s
u
, where G is shear modulus and s
u
is undrained shear strength), plastic volumetric strain potential (Λ = 1 – (C
s
/C
c
), where C
s
is swelling index and C
c
is virgin compression index), and effective friction angles (
and
). A direct CPTu means of assessing the undrained rigidity index in a reliable manner is also developed that gives the N
kt
cone factor and matches profiles of undrained shear strength from triaxial compression tests (s
uTC
). The modified solution is also implemented on two additional sites: a sensitive-quick clay in Norway and structured varved clay from New England. Interpretations of the coefficient of consolidation and permeability from pore-water pressure dissipation tests at Gloucester are evaluated using the SCE–CSSM formulation and shown to be comparable with independent laboratory and field tests.</abstract><cop>Ottawa</cop><pub>NRC Research Press</pub><doi>10.1139/cgj-2017-0388</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-3674 |
ispartof | Canadian geotechnical journal, 2018-12, Vol.55 (12), p.1781-1794 |
issn | 0008-3674 1208-6010 |
language | eng |
recordid | cdi_gale_infotracgeneralonefile_A563953192 |
source | NRC Research Press; Alma/SFX Local Collection |
subjects | argiles argiles sensibles Cavity expansion Clay clays Compression Compression index Compressive strength cone penetrometer Consolidation contraintes d’élasticité Dynamic testing (Engineering) Effective stress essais in situ Field tests Friction Hydrostatic pressure in situ testing Leda Mathematical analysis Mechanical properties Membrane permeability Methods Overconsolidation overconsolidation ratio Parameter sensitivity Parameters Penetration Permeability piezocone piézocône Pore water Pore water pressure preconsolidation Profiles préconsolidation pénétromètre à cône Quick clays rapport de surconsolidation Rigidity sensitive clays Shear modulus Shear strength Soil Soil mechanics Soil permeability Soil sampling Strain Stress-strain curves Testing Tests Triaxial compression tests Volumetric strain Water Water pressure Yield stress yield stresses |
title | Interpretation of piezocone penetration and dissipation tests in sensitive Leda clay at Gloucester test site |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_nrcre&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpretation%20of%20piezocone%20penetration%20and%20dissipation%20tests%20in%20sensitive%20Leda%20clay%20at%20Gloucester%20test%20site&rft.jtitle=Canadian%20geotechnical%20journal&rft.au=Agaiby,%20Shehab%20S&rft.date=2018-12-01&rft.volume=55&rft.issue=12&rft.spage=1781&rft.epage=1794&rft.pages=1781-1794&rft.issn=0008-3674&rft.eissn=1208-6010&rft_id=info:doi/10.1139/cgj-2017-0388&rft_dat=%3Cgale_nrcre%3EA563953192%3C/gale_nrcre%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194571092&rft_id=info:pmid/&rft_galeid=A563953192&rfr_iscdi=true |