The Stochastic Container Relocation Problem

The container relocation problem (CRP) is concerned with finding a sequence of moves of containers that minimizes the number of relocations needed to retrieve all containers, while respecting a given order of retrieval. However, the assumption of knowing the full retrieval order of containers is par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation science 2018-09, Vol.52 (5), p.1035-1058
Hauptverfasser: Galle, V, Manshadi, V.H, Boroujeni, S. Borjian, Barnhart, C, Jaillet, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1058
container_issue 5
container_start_page 1035
container_title Transportation science
container_volume 52
creator Galle, V
Manshadi, V.H
Boroujeni, S. Borjian
Barnhart, C
Jaillet, P
description The container relocation problem (CRP) is concerned with finding a sequence of moves of containers that minimizes the number of relocations needed to retrieve all containers, while respecting a given order of retrieval. However, the assumption of knowing the full retrieval order of containers is particularly unrealistic in real operations. This paper studies the stochastic CRP, which relaxes this assumption. A new multistage stochastic model, called the batch model , is introduced, motivated, and compared with an existing model (the online model ). The two main contributions are an optimal algorithm called Pruning-Best-First-Search (PBFS) and a randomized approximate algorithm called PBFS-Approximate with a bounded average error. Both algorithms, applicable in the batch and online models, are based on a new family of lower bounds for which we show some theoretical properties. Moreover, we introduce two new heuristics outperforming the best existing heuristics. Algorithms, bounds, and heuristics are tested in an extensive computational section. Finally, based on strong computational evidence, we conjecture the optimality of the “leveling” heuristic in a special “no information” case, where, at any retrieval stage, any of the remaining containers is equally likely to be retrieved next. The online appendix is available at https://doi.org/10.1287/trsc.2018.0828 .
doi_str_mv 10.1287/trsc.2018.0828
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracgeneralonefile_A560311583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A560311583</galeid><sourcerecordid>A560311583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-6c0a2a8ca07f0c1f3d7f353c5b6dfe0f3ca43229990d28d2a351bc495af98c893</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AgCs7p1fNA8KKdL0nTpscx_AUDRec5ZGmyZbTNTFLQ_96WCXMwkEAC4ZPkvXwRusQwxoTnd9EHNSaA-Rg44UdogBnJEpam-TEaAKQ4wRljp-gshDUAZjlmA3QzX-nRe3RqJUO0ajR1TZS20X70piunZLSuGb16t6h0fY5OjKyCvvhdh-jj4X4-fUpmL4_P08ksUYxBTDIFkkiuJOQGFDa0zA1lVLFFVhoNhiqZUkKKooCS8JJIyvBCpQWTpuCKF3SIrrb3brz7bHWIYu1a33RPCoIpkBwDYzu1lJUWtjEueqlqG5SYsAwoxozTTiUH1FJ3HcrKNdrYbnvPjw_4bpS6turggeu9A52J-isuZRuC2Ie3f-CiDd0vh24KdrmKYesPFaK8C8FrIzbe1tJ_Cwyiz1v0eYs-b9Hnveu0L9rX4T__A5bZqLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130271055</pqid></control><display><type>article</type><title>The Stochastic Container Relocation Problem</title><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Galle, V ; Manshadi, V.H ; Boroujeni, S. Borjian ; Barnhart, C ; Jaillet, P</creator><creatorcontrib>Galle, V ; Manshadi, V.H ; Boroujeni, S. Borjian ; Barnhart, C ; Jaillet, P</creatorcontrib><description>The container relocation problem (CRP) is concerned with finding a sequence of moves of containers that minimizes the number of relocations needed to retrieve all containers, while respecting a given order of retrieval. However, the assumption of knowing the full retrieval order of containers is particularly unrealistic in real operations. This paper studies the stochastic CRP, which relaxes this assumption. A new multistage stochastic model, called the batch model , is introduced, motivated, and compared with an existing model (the online model ). The two main contributions are an optimal algorithm called Pruning-Best-First-Search (PBFS) and a randomized approximate algorithm called PBFS-Approximate with a bounded average error. Both algorithms, applicable in the batch and online models, are based on a new family of lower bounds for which we show some theoretical properties. Moreover, we introduce two new heuristics outperforming the best existing heuristics. Algorithms, bounds, and heuristics are tested in an extensive computational section. Finally, based on strong computational evidence, we conjecture the optimality of the “leveling” heuristic in a special “no information” case, where, at any retrieval stage, any of the remaining containers is equally likely to be retrieved next. The online appendix is available at https://doi.org/10.1287/trsc.2018.0828 .</description><identifier>ISSN: 0041-1655</identifier><identifier>EISSN: 1526-5447</identifier><identifier>DOI: 10.1287/trsc.2018.0828</identifier><language>eng</language><publisher>Baltimore: INFORMS</publisher><subject>Analysis ; block relocation problem ; Combinatorial optimization ; container relocation problem ; Containers ; Decision tree ; decision trees ; Freight ; Management ; multistage stochastic models ; Relocation ; Shipment of goods ; Shipping ; Transportation economics ; Transportation terminals</subject><ispartof>Transportation science, 2018-09, Vol.52 (5), p.1035-1058</ispartof><rights>COPYRIGHT 2018 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Sep/Oct 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-6c0a2a8ca07f0c1f3d7f353c5b6dfe0f3ca43229990d28d2a351bc495af98c893</citedby><cites>FETCH-LOGICAL-c550t-6c0a2a8ca07f0c1f3d7f353c5b6dfe0f3ca43229990d28d2a351bc495af98c893</cites><orcidid>0000-0001-9103-7797 ; 0000-0002-8585-6566 ; 0000-0003-0234-5101 ; 0000-0002-5835-5870 ; 0000-0003-2725-2227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/trsc.2018.0828$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>315,781,785,3693,27929,27930,62621</link.rule.ids></links><search><creatorcontrib>Galle, V</creatorcontrib><creatorcontrib>Manshadi, V.H</creatorcontrib><creatorcontrib>Boroujeni, S. Borjian</creatorcontrib><creatorcontrib>Barnhart, C</creatorcontrib><creatorcontrib>Jaillet, P</creatorcontrib><title>The Stochastic Container Relocation Problem</title><title>Transportation science</title><description>The container relocation problem (CRP) is concerned with finding a sequence of moves of containers that minimizes the number of relocations needed to retrieve all containers, while respecting a given order of retrieval. However, the assumption of knowing the full retrieval order of containers is particularly unrealistic in real operations. This paper studies the stochastic CRP, which relaxes this assumption. A new multistage stochastic model, called the batch model , is introduced, motivated, and compared with an existing model (the online model ). The two main contributions are an optimal algorithm called Pruning-Best-First-Search (PBFS) and a randomized approximate algorithm called PBFS-Approximate with a bounded average error. Both algorithms, applicable in the batch and online models, are based on a new family of lower bounds for which we show some theoretical properties. Moreover, we introduce two new heuristics outperforming the best existing heuristics. Algorithms, bounds, and heuristics are tested in an extensive computational section. Finally, based on strong computational evidence, we conjecture the optimality of the “leveling” heuristic in a special “no information” case, where, at any retrieval stage, any of the remaining containers is equally likely to be retrieved next. The online appendix is available at https://doi.org/10.1287/trsc.2018.0828 .</description><subject>Analysis</subject><subject>block relocation problem</subject><subject>Combinatorial optimization</subject><subject>container relocation problem</subject><subject>Containers</subject><subject>Decision tree</subject><subject>decision trees</subject><subject>Freight</subject><subject>Management</subject><subject>multistage stochastic models</subject><subject>Relocation</subject><subject>Shipment of goods</subject><subject>Shipping</subject><subject>Transportation economics</subject><subject>Transportation terminals</subject><issn>0041-1655</issn><issn>1526-5447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqF0c9LwzAUB_AgCs7p1fNA8KKdL0nTpscx_AUDRec5ZGmyZbTNTFLQ_96WCXMwkEAC4ZPkvXwRusQwxoTnd9EHNSaA-Rg44UdogBnJEpam-TEaAKQ4wRljp-gshDUAZjlmA3QzX-nRe3RqJUO0ajR1TZS20X70piunZLSuGb16t6h0fY5OjKyCvvhdh-jj4X4-fUpmL4_P08ksUYxBTDIFkkiuJOQGFDa0zA1lVLFFVhoNhiqZUkKKooCS8JJIyvBCpQWTpuCKF3SIrrb3brz7bHWIYu1a33RPCoIpkBwDYzu1lJUWtjEueqlqG5SYsAwoxozTTiUH1FJ3HcrKNdrYbnvPjw_4bpS6turggeu9A52J-isuZRuC2Ie3f-CiDd0vh24KdrmKYesPFaK8C8FrIzbe1tJ_Cwyiz1v0eYs-b9Hnveu0L9rX4T__A5bZqLE</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Galle, V</creator><creator>Manshadi, V.H</creator><creator>Boroujeni, S. Borjian</creator><creator>Barnhart, C</creator><creator>Jaillet, P</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0001-9103-7797</orcidid><orcidid>https://orcid.org/0000-0002-8585-6566</orcidid><orcidid>https://orcid.org/0000-0003-0234-5101</orcidid><orcidid>https://orcid.org/0000-0002-5835-5870</orcidid><orcidid>https://orcid.org/0000-0003-2725-2227</orcidid></search><sort><creationdate>20180901</creationdate><title>The Stochastic Container Relocation Problem</title><author>Galle, V ; Manshadi, V.H ; Boroujeni, S. Borjian ; Barnhart, C ; Jaillet, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-6c0a2a8ca07f0c1f3d7f353c5b6dfe0f3ca43229990d28d2a351bc495af98c893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>block relocation problem</topic><topic>Combinatorial optimization</topic><topic>container relocation problem</topic><topic>Containers</topic><topic>Decision tree</topic><topic>decision trees</topic><topic>Freight</topic><topic>Management</topic><topic>multistage stochastic models</topic><topic>Relocation</topic><topic>Shipment of goods</topic><topic>Shipping</topic><topic>Transportation economics</topic><topic>Transportation terminals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galle, V</creatorcontrib><creatorcontrib>Manshadi, V.H</creatorcontrib><creatorcontrib>Boroujeni, S. Borjian</creatorcontrib><creatorcontrib>Barnhart, C</creatorcontrib><creatorcontrib>Jaillet, P</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Transportation science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galle, V</au><au>Manshadi, V.H</au><au>Boroujeni, S. Borjian</au><au>Barnhart, C</au><au>Jaillet, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Stochastic Container Relocation Problem</atitle><jtitle>Transportation science</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>52</volume><issue>5</issue><spage>1035</spage><epage>1058</epage><pages>1035-1058</pages><issn>0041-1655</issn><eissn>1526-5447</eissn><abstract>The container relocation problem (CRP) is concerned with finding a sequence of moves of containers that minimizes the number of relocations needed to retrieve all containers, while respecting a given order of retrieval. However, the assumption of knowing the full retrieval order of containers is particularly unrealistic in real operations. This paper studies the stochastic CRP, which relaxes this assumption. A new multistage stochastic model, called the batch model , is introduced, motivated, and compared with an existing model (the online model ). The two main contributions are an optimal algorithm called Pruning-Best-First-Search (PBFS) and a randomized approximate algorithm called PBFS-Approximate with a bounded average error. Both algorithms, applicable in the batch and online models, are based on a new family of lower bounds for which we show some theoretical properties. Moreover, we introduce two new heuristics outperforming the best existing heuristics. Algorithms, bounds, and heuristics are tested in an extensive computational section. Finally, based on strong computational evidence, we conjecture the optimality of the “leveling” heuristic in a special “no information” case, where, at any retrieval stage, any of the remaining containers is equally likely to be retrieved next. The online appendix is available at https://doi.org/10.1287/trsc.2018.0828 .</abstract><cop>Baltimore</cop><pub>INFORMS</pub><doi>10.1287/trsc.2018.0828</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-9103-7797</orcidid><orcidid>https://orcid.org/0000-0002-8585-6566</orcidid><orcidid>https://orcid.org/0000-0003-0234-5101</orcidid><orcidid>https://orcid.org/0000-0002-5835-5870</orcidid><orcidid>https://orcid.org/0000-0003-2725-2227</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0041-1655
ispartof Transportation science, 2018-09, Vol.52 (5), p.1035-1058
issn 0041-1655
1526-5447
language eng
recordid cdi_gale_infotracgeneralonefile_A560311583
source INFORMS PubsOnLine; Business Source Complete; JSTOR Archive Collection A-Z Listing
subjects Analysis
block relocation problem
Combinatorial optimization
container relocation problem
Containers
Decision tree
decision trees
Freight
Management
multistage stochastic models
Relocation
Shipment of goods
Shipping
Transportation economics
Transportation terminals
title The Stochastic Container Relocation Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T20%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Stochastic%20Container%20Relocation%20Problem&rft.jtitle=Transportation%20science&rft.au=Galle,%20V&rft.date=2018-09-01&rft.volume=52&rft.issue=5&rft.spage=1035&rft.epage=1058&rft.pages=1035-1058&rft.issn=0041-1655&rft.eissn=1526-5447&rft_id=info:doi/10.1287/trsc.2018.0828&rft_dat=%3Cgale_cross%3EA560311583%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130271055&rft_id=info:pmid/&rft_galeid=A560311583&rfr_iscdi=true