The Stochastic Container Relocation Problem
The container relocation problem (CRP) is concerned with finding a sequence of moves of containers that minimizes the number of relocations needed to retrieve all containers, while respecting a given order of retrieval. However, the assumption of knowing the full retrieval order of containers is par...
Gespeichert in:
Veröffentlicht in: | Transportation science 2018-09, Vol.52 (5), p.1035-1058 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1058 |
---|---|
container_issue | 5 |
container_start_page | 1035 |
container_title | Transportation science |
container_volume | 52 |
creator | Galle, V Manshadi, V.H Boroujeni, S. Borjian Barnhart, C Jaillet, P |
description | The container relocation problem (CRP) is concerned with finding a sequence of moves of containers that minimizes the number of relocations needed to retrieve all containers, while respecting a given order of retrieval. However, the assumption of knowing the full retrieval order of containers is particularly unrealistic in real operations. This paper studies the stochastic CRP, which relaxes this assumption. A new multistage stochastic model, called the
batch model
, is introduced, motivated, and compared with an existing model (the
online model
). The two main contributions are an optimal algorithm called
Pruning-Best-First-Search (PBFS)
and a randomized approximate algorithm called
PBFS-Approximate
with a bounded average error. Both algorithms, applicable in the batch and online models, are based on a new family of lower bounds for which we show some theoretical properties. Moreover, we introduce two new heuristics outperforming the best existing heuristics. Algorithms, bounds, and heuristics are tested in an extensive computational section. Finally, based on strong computational evidence, we conjecture the optimality of the “leveling” heuristic in a special “no information” case, where, at any retrieval stage, any of the remaining containers is equally likely to be retrieved next.
The online appendix is available at
https://doi.org/10.1287/trsc.2018.0828
. |
doi_str_mv | 10.1287/trsc.2018.0828 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracgeneralonefile_A560311583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A560311583</galeid><sourcerecordid>A560311583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-6c0a2a8ca07f0c1f3d7f353c5b6dfe0f3ca43229990d28d2a351bc495af98c893</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AgCs7p1fNA8KKdL0nTpscx_AUDRec5ZGmyZbTNTFLQ_96WCXMwkEAC4ZPkvXwRusQwxoTnd9EHNSaA-Rg44UdogBnJEpam-TEaAKQ4wRljp-gshDUAZjlmA3QzX-nRe3RqJUO0ajR1TZS20X70piunZLSuGb16t6h0fY5OjKyCvvhdh-jj4X4-fUpmL4_P08ksUYxBTDIFkkiuJOQGFDa0zA1lVLFFVhoNhiqZUkKKooCS8JJIyvBCpQWTpuCKF3SIrrb3brz7bHWIYu1a33RPCoIpkBwDYzu1lJUWtjEueqlqG5SYsAwoxozTTiUH1FJ3HcrKNdrYbnvPjw_4bpS6turggeu9A52J-isuZRuC2Ie3f-CiDd0vh24KdrmKYesPFaK8C8FrIzbe1tJ_Cwyiz1v0eYs-b9Hnveu0L9rX4T__A5bZqLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130271055</pqid></control><display><type>article</type><title>The Stochastic Container Relocation Problem</title><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Galle, V ; Manshadi, V.H ; Boroujeni, S. Borjian ; Barnhart, C ; Jaillet, P</creator><creatorcontrib>Galle, V ; Manshadi, V.H ; Boroujeni, S. Borjian ; Barnhart, C ; Jaillet, P</creatorcontrib><description>The container relocation problem (CRP) is concerned with finding a sequence of moves of containers that minimizes the number of relocations needed to retrieve all containers, while respecting a given order of retrieval. However, the assumption of knowing the full retrieval order of containers is particularly unrealistic in real operations. This paper studies the stochastic CRP, which relaxes this assumption. A new multistage stochastic model, called the
batch model
, is introduced, motivated, and compared with an existing model (the
online model
). The two main contributions are an optimal algorithm called
Pruning-Best-First-Search (PBFS)
and a randomized approximate algorithm called
PBFS-Approximate
with a bounded average error. Both algorithms, applicable in the batch and online models, are based on a new family of lower bounds for which we show some theoretical properties. Moreover, we introduce two new heuristics outperforming the best existing heuristics. Algorithms, bounds, and heuristics are tested in an extensive computational section. Finally, based on strong computational evidence, we conjecture the optimality of the “leveling” heuristic in a special “no information” case, where, at any retrieval stage, any of the remaining containers is equally likely to be retrieved next.
The online appendix is available at
https://doi.org/10.1287/trsc.2018.0828
.</description><identifier>ISSN: 0041-1655</identifier><identifier>EISSN: 1526-5447</identifier><identifier>DOI: 10.1287/trsc.2018.0828</identifier><language>eng</language><publisher>Baltimore: INFORMS</publisher><subject>Analysis ; block relocation problem ; Combinatorial optimization ; container relocation problem ; Containers ; Decision tree ; decision trees ; Freight ; Management ; multistage stochastic models ; Relocation ; Shipment of goods ; Shipping ; Transportation economics ; Transportation terminals</subject><ispartof>Transportation science, 2018-09, Vol.52 (5), p.1035-1058</ispartof><rights>COPYRIGHT 2018 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Sep/Oct 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-6c0a2a8ca07f0c1f3d7f353c5b6dfe0f3ca43229990d28d2a351bc495af98c893</citedby><cites>FETCH-LOGICAL-c550t-6c0a2a8ca07f0c1f3d7f353c5b6dfe0f3ca43229990d28d2a351bc495af98c893</cites><orcidid>0000-0001-9103-7797 ; 0000-0002-8585-6566 ; 0000-0003-0234-5101 ; 0000-0002-5835-5870 ; 0000-0003-2725-2227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/trsc.2018.0828$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>315,781,785,3693,27929,27930,62621</link.rule.ids></links><search><creatorcontrib>Galle, V</creatorcontrib><creatorcontrib>Manshadi, V.H</creatorcontrib><creatorcontrib>Boroujeni, S. Borjian</creatorcontrib><creatorcontrib>Barnhart, C</creatorcontrib><creatorcontrib>Jaillet, P</creatorcontrib><title>The Stochastic Container Relocation Problem</title><title>Transportation science</title><description>The container relocation problem (CRP) is concerned with finding a sequence of moves of containers that minimizes the number of relocations needed to retrieve all containers, while respecting a given order of retrieval. However, the assumption of knowing the full retrieval order of containers is particularly unrealistic in real operations. This paper studies the stochastic CRP, which relaxes this assumption. A new multistage stochastic model, called the
batch model
, is introduced, motivated, and compared with an existing model (the
online model
). The two main contributions are an optimal algorithm called
Pruning-Best-First-Search (PBFS)
and a randomized approximate algorithm called
PBFS-Approximate
with a bounded average error. Both algorithms, applicable in the batch and online models, are based on a new family of lower bounds for which we show some theoretical properties. Moreover, we introduce two new heuristics outperforming the best existing heuristics. Algorithms, bounds, and heuristics are tested in an extensive computational section. Finally, based on strong computational evidence, we conjecture the optimality of the “leveling” heuristic in a special “no information” case, where, at any retrieval stage, any of the remaining containers is equally likely to be retrieved next.
The online appendix is available at
https://doi.org/10.1287/trsc.2018.0828
.</description><subject>Analysis</subject><subject>block relocation problem</subject><subject>Combinatorial optimization</subject><subject>container relocation problem</subject><subject>Containers</subject><subject>Decision tree</subject><subject>decision trees</subject><subject>Freight</subject><subject>Management</subject><subject>multistage stochastic models</subject><subject>Relocation</subject><subject>Shipment of goods</subject><subject>Shipping</subject><subject>Transportation economics</subject><subject>Transportation terminals</subject><issn>0041-1655</issn><issn>1526-5447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqF0c9LwzAUB_AgCs7p1fNA8KKdL0nTpscx_AUDRec5ZGmyZbTNTFLQ_96WCXMwkEAC4ZPkvXwRusQwxoTnd9EHNSaA-Rg44UdogBnJEpam-TEaAKQ4wRljp-gshDUAZjlmA3QzX-nRe3RqJUO0ajR1TZS20X70piunZLSuGb16t6h0fY5OjKyCvvhdh-jj4X4-fUpmL4_P08ksUYxBTDIFkkiuJOQGFDa0zA1lVLFFVhoNhiqZUkKKooCS8JJIyvBCpQWTpuCKF3SIrrb3brz7bHWIYu1a33RPCoIpkBwDYzu1lJUWtjEueqlqG5SYsAwoxozTTiUH1FJ3HcrKNdrYbnvPjw_4bpS6turggeu9A52J-isuZRuC2Ie3f-CiDd0vh24KdrmKYesPFaK8C8FrIzbe1tJ_Cwyiz1v0eYs-b9Hnveu0L9rX4T__A5bZqLE</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Galle, V</creator><creator>Manshadi, V.H</creator><creator>Boroujeni, S. Borjian</creator><creator>Barnhart, C</creator><creator>Jaillet, P</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0001-9103-7797</orcidid><orcidid>https://orcid.org/0000-0002-8585-6566</orcidid><orcidid>https://orcid.org/0000-0003-0234-5101</orcidid><orcidid>https://orcid.org/0000-0002-5835-5870</orcidid><orcidid>https://orcid.org/0000-0003-2725-2227</orcidid></search><sort><creationdate>20180901</creationdate><title>The Stochastic Container Relocation Problem</title><author>Galle, V ; Manshadi, V.H ; Boroujeni, S. Borjian ; Barnhart, C ; Jaillet, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-6c0a2a8ca07f0c1f3d7f353c5b6dfe0f3ca43229990d28d2a351bc495af98c893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>block relocation problem</topic><topic>Combinatorial optimization</topic><topic>container relocation problem</topic><topic>Containers</topic><topic>Decision tree</topic><topic>decision trees</topic><topic>Freight</topic><topic>Management</topic><topic>multistage stochastic models</topic><topic>Relocation</topic><topic>Shipment of goods</topic><topic>Shipping</topic><topic>Transportation economics</topic><topic>Transportation terminals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galle, V</creatorcontrib><creatorcontrib>Manshadi, V.H</creatorcontrib><creatorcontrib>Boroujeni, S. Borjian</creatorcontrib><creatorcontrib>Barnhart, C</creatorcontrib><creatorcontrib>Jaillet, P</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Transportation science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galle, V</au><au>Manshadi, V.H</au><au>Boroujeni, S. Borjian</au><au>Barnhart, C</au><au>Jaillet, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Stochastic Container Relocation Problem</atitle><jtitle>Transportation science</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>52</volume><issue>5</issue><spage>1035</spage><epage>1058</epage><pages>1035-1058</pages><issn>0041-1655</issn><eissn>1526-5447</eissn><abstract>The container relocation problem (CRP) is concerned with finding a sequence of moves of containers that minimizes the number of relocations needed to retrieve all containers, while respecting a given order of retrieval. However, the assumption of knowing the full retrieval order of containers is particularly unrealistic in real operations. This paper studies the stochastic CRP, which relaxes this assumption. A new multistage stochastic model, called the
batch model
, is introduced, motivated, and compared with an existing model (the
online model
). The two main contributions are an optimal algorithm called
Pruning-Best-First-Search (PBFS)
and a randomized approximate algorithm called
PBFS-Approximate
with a bounded average error. Both algorithms, applicable in the batch and online models, are based on a new family of lower bounds for which we show some theoretical properties. Moreover, we introduce two new heuristics outperforming the best existing heuristics. Algorithms, bounds, and heuristics are tested in an extensive computational section. Finally, based on strong computational evidence, we conjecture the optimality of the “leveling” heuristic in a special “no information” case, where, at any retrieval stage, any of the remaining containers is equally likely to be retrieved next.
The online appendix is available at
https://doi.org/10.1287/trsc.2018.0828
.</abstract><cop>Baltimore</cop><pub>INFORMS</pub><doi>10.1287/trsc.2018.0828</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-9103-7797</orcidid><orcidid>https://orcid.org/0000-0002-8585-6566</orcidid><orcidid>https://orcid.org/0000-0003-0234-5101</orcidid><orcidid>https://orcid.org/0000-0002-5835-5870</orcidid><orcidid>https://orcid.org/0000-0003-2725-2227</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-1655 |
ispartof | Transportation science, 2018-09, Vol.52 (5), p.1035-1058 |
issn | 0041-1655 1526-5447 |
language | eng |
recordid | cdi_gale_infotracgeneralonefile_A560311583 |
source | INFORMS PubsOnLine; Business Source Complete; JSTOR Archive Collection A-Z Listing |
subjects | Analysis block relocation problem Combinatorial optimization container relocation problem Containers Decision tree decision trees Freight Management multistage stochastic models Relocation Shipment of goods Shipping Transportation economics Transportation terminals |
title | The Stochastic Container Relocation Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T20%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Stochastic%20Container%20Relocation%20Problem&rft.jtitle=Transportation%20science&rft.au=Galle,%20V&rft.date=2018-09-01&rft.volume=52&rft.issue=5&rft.spage=1035&rft.epage=1058&rft.pages=1035-1058&rft.issn=0041-1655&rft.eissn=1526-5447&rft_id=info:doi/10.1287/trsc.2018.0828&rft_dat=%3Cgale_cross%3EA560311583%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130271055&rft_id=info:pmid/&rft_galeid=A560311583&rfr_iscdi=true |