Sentence-Based Text Analysis for Customer Reviews

Firms collect an increasing amount of consumer feedback in the form of unstructured consumer reviews. These reviews contain text about consumer experiences with products and services that are different from surveys that query consumers for specific information. A challenge in analyzing unstructured...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marketing science (Providence, R.I.) R.I.), 2016-11, Vol.35 (6), p.953-975
Hauptverfasser: Büschken, Joachim, Allenby, Greg M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 975
container_issue 6
container_start_page 953
container_title Marketing science (Providence, R.I.)
container_volume 35
creator Büschken, Joachim
Allenby, Greg M.
description Firms collect an increasing amount of consumer feedback in the form of unstructured consumer reviews. These reviews contain text about consumer experiences with products and services that are different from surveys that query consumers for specific information. A challenge in analyzing unstructured consumer reviews is in making sense of the topics that are expressed in the words used to describe these experiences. We propose a new model for text analysis that makes use of the sentence structure contained in the reviews and show that it leads to improved inference and prediction of consumer ratings relative to existing models using data from www.expedia.com and www.we8there.com . Sentence-based topics are found to be more distinguished and coherent than those identified from a word-based analysis. Data, as supplemental material, are available at https://doi.org/10.1287/mksc.2016.0993 .
doi_str_mv 10.1287/mksc.2016.0993
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracgeneralonefile_A473845207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473845207</galeid><jstor_id>45158464</jstor_id><sourcerecordid>A473845207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c671t-29249a01d2b8ecfcfe58a587f271994e5004fb5a2b32ceaaef37be8ed19174903</originalsourceid><addsrcrecordid>eNqFkt1rFDEUxQex4Fp99XlAFB-cNZ-T5HG7tCoUBK3gW8hkb9as81FzZ2z73zfDCu3KggQSCL9zbu7NKYpXlCwp0-pD9wv9khFaL4kx_EmxoJLVlRT6x9NiQRRnFePGPCueI-4IIYoRvSjoN-hH6D1UZw5hU17B7ViuetfeYcQyDKlcTzgOHaTyK_yJcIMvipPgWoSXf8_T4vvF-dX6U3X55ePn9eqy8rWiY8UME8YRumGNBh98AKmd1CowRY0RIAkRoZGONZx5cA4CVw1o2FBDlTCEnxbv9r7Xafg9AY62i-ihbV0Pw4SW6rquhdK1yejrf9DdMKXcxEzlQlpwqR6orWvBxj4MY3J-NrUrobgWkpGZqo5QW-ghuXboIcR8fcAvj_B5baCL_qjg7YEgM2Me-tZNiPYQfP8IbCaMPWDeMG5_jrjnjz3EpwExQbDXKXYu3VlK7BwQOwfEzgGxc0Cy4M1esMsfnB7TjBNlhaRSi1o8TGRuLnX4P997iuLEXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850084357</pqid></control><display><type>article</type><title>Sentence-Based Text Analysis for Customer Reviews</title><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Büschken, Joachim ; Allenby, Greg M.</creator><creatorcontrib>Büschken, Joachim ; Allenby, Greg M.</creatorcontrib><description>Firms collect an increasing amount of consumer feedback in the form of unstructured consumer reviews. These reviews contain text about consumer experiences with products and services that are different from surveys that query consumers for specific information. A challenge in analyzing unstructured consumer reviews is in making sense of the topics that are expressed in the words used to describe these experiences. We propose a new model for text analysis that makes use of the sentence structure contained in the reviews and show that it leads to improved inference and prediction of consumer ratings relative to existing models using data from www.expedia.com and www.we8there.com . Sentence-based topics are found to be more distinguished and coherent than those identified from a word-based analysis. Data, as supplemental material, are available at https://doi.org/10.1287/mksc.2016.0993 .</description><identifier>ISSN: 0732-2399</identifier><identifier>EISSN: 1526-548X</identifier><identifier>DOI: 10.1287/mksc.2016.0993</identifier><identifier>CODEN: MARSE5</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Analysis ; Bayesian analysis ; big data ; Consumer behavior ; Customer feedback ; extended LDA model ; Marketing research ; Product reviews ; Studies ; Surveys ; Syntax ; Text analysis ; text data ; unstructured data ; user-generated content</subject><ispartof>Marketing science (Providence, R.I.), 2016-11, Vol.35 (6), p.953-975</ispartof><rights>2016 INFORMS</rights><rights>COPYRIGHT 2016 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Nov-Dec 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c671t-29249a01d2b8ecfcfe58a587f271994e5004fb5a2b32ceaaef37be8ed19174903</citedby><cites>FETCH-LOGICAL-c671t-29249a01d2b8ecfcfe58a587f271994e5004fb5a2b32ceaaef37be8ed19174903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45158464$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/mksc.2016.0993$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,3692,27924,27925,58017,58250,62616</link.rule.ids></links><search><creatorcontrib>Büschken, Joachim</creatorcontrib><creatorcontrib>Allenby, Greg M.</creatorcontrib><title>Sentence-Based Text Analysis for Customer Reviews</title><title>Marketing science (Providence, R.I.)</title><description>Firms collect an increasing amount of consumer feedback in the form of unstructured consumer reviews. These reviews contain text about consumer experiences with products and services that are different from surveys that query consumers for specific information. A challenge in analyzing unstructured consumer reviews is in making sense of the topics that are expressed in the words used to describe these experiences. We propose a new model for text analysis that makes use of the sentence structure contained in the reviews and show that it leads to improved inference and prediction of consumer ratings relative to existing models using data from www.expedia.com and www.we8there.com . Sentence-based topics are found to be more distinguished and coherent than those identified from a word-based analysis. Data, as supplemental material, are available at https://doi.org/10.1287/mksc.2016.0993 .</description><subject>Analysis</subject><subject>Bayesian analysis</subject><subject>big data</subject><subject>Consumer behavior</subject><subject>Customer feedback</subject><subject>extended LDA model</subject><subject>Marketing research</subject><subject>Product reviews</subject><subject>Studies</subject><subject>Surveys</subject><subject>Syntax</subject><subject>Text analysis</subject><subject>text data</subject><subject>unstructured data</subject><subject>user-generated content</subject><issn>0732-2399</issn><issn>1526-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFkt1rFDEUxQex4Fp99XlAFB-cNZ-T5HG7tCoUBK3gW8hkb9as81FzZ2z73zfDCu3KggQSCL9zbu7NKYpXlCwp0-pD9wv9khFaL4kx_EmxoJLVlRT6x9NiQRRnFePGPCueI-4IIYoRvSjoN-hH6D1UZw5hU17B7ViuetfeYcQyDKlcTzgOHaTyK_yJcIMvipPgWoSXf8_T4vvF-dX6U3X55ePn9eqy8rWiY8UME8YRumGNBh98AKmd1CowRY0RIAkRoZGONZx5cA4CVw1o2FBDlTCEnxbv9r7Xafg9AY62i-ihbV0Pw4SW6rquhdK1yejrf9DdMKXcxEzlQlpwqR6orWvBxj4MY3J-NrUrobgWkpGZqo5QW-ghuXboIcR8fcAvj_B5baCL_qjg7YEgM2Me-tZNiPYQfP8IbCaMPWDeMG5_jrjnjz3EpwExQbDXKXYu3VlK7BwQOwfEzgGxc0Cy4M1esMsfnB7TjBNlhaRSi1o8TGRuLnX4P997iuLEXw</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Büschken, Joachim</creator><creator>Allenby, Greg M.</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20161101</creationdate><title>Sentence-Based Text Analysis for Customer Reviews</title><author>Büschken, Joachim ; Allenby, Greg M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c671t-29249a01d2b8ecfcfe58a587f271994e5004fb5a2b32ceaaef37be8ed19174903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Bayesian analysis</topic><topic>big data</topic><topic>Consumer behavior</topic><topic>Customer feedback</topic><topic>extended LDA model</topic><topic>Marketing research</topic><topic>Product reviews</topic><topic>Studies</topic><topic>Surveys</topic><topic>Syntax</topic><topic>Text analysis</topic><topic>text data</topic><topic>unstructured data</topic><topic>user-generated content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Büschken, Joachim</creatorcontrib><creatorcontrib>Allenby, Greg M.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Marketing science (Providence, R.I.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Büschken, Joachim</au><au>Allenby, Greg M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sentence-Based Text Analysis for Customer Reviews</atitle><jtitle>Marketing science (Providence, R.I.)</jtitle><date>2016-11-01</date><risdate>2016</risdate><volume>35</volume><issue>6</issue><spage>953</spage><epage>975</epage><pages>953-975</pages><issn>0732-2399</issn><eissn>1526-548X</eissn><coden>MARSE5</coden><abstract>Firms collect an increasing amount of consumer feedback in the form of unstructured consumer reviews. These reviews contain text about consumer experiences with products and services that are different from surveys that query consumers for specific information. A challenge in analyzing unstructured consumer reviews is in making sense of the topics that are expressed in the words used to describe these experiences. We propose a new model for text analysis that makes use of the sentence structure contained in the reviews and show that it leads to improved inference and prediction of consumer ratings relative to existing models using data from www.expedia.com and www.we8there.com . Sentence-based topics are found to be more distinguished and coherent than those identified from a word-based analysis. Data, as supplemental material, are available at https://doi.org/10.1287/mksc.2016.0993 .</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/mksc.2016.0993</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0732-2399
ispartof Marketing science (Providence, R.I.), 2016-11, Vol.35 (6), p.953-975
issn 0732-2399
1526-548X
language eng
recordid cdi_gale_infotracgeneralonefile_A473845207
source INFORMS PubsOnLine; Business Source Complete; JSTOR Archive Collection A-Z Listing
subjects Analysis
Bayesian analysis
big data
Consumer behavior
Customer feedback
extended LDA model
Marketing research
Product reviews
Studies
Surveys
Syntax
Text analysis
text data
unstructured data
user-generated content
title Sentence-Based Text Analysis for Customer Reviews
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sentence-Based%20Text%20Analysis%20for%20Customer%20Reviews&rft.jtitle=Marketing%20science%20(Providence,%20R.I.)&rft.au=B%C3%BCschken,%20Joachim&rft.date=2016-11-01&rft.volume=35&rft.issue=6&rft.spage=953&rft.epage=975&rft.pages=953-975&rft.issn=0732-2399&rft.eissn=1526-548X&rft.coden=MARSE5&rft_id=info:doi/10.1287/mksc.2016.0993&rft_dat=%3Cgale_proqu%3EA473845207%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850084357&rft_id=info:pmid/&rft_galeid=A473845207&rft_jstor_id=45158464&rfr_iscdi=true