Risk Estimation via Regression

We introduce a regression-based nested Monte Carlo simulation method for the estimation of financial risk. An outer simulation level is used to generate financial risk factors and an inner simulation level is used to price securities and compute portfolio losses given risk factor outcomes. The mean...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research 2015-09, Vol.63 (5), p.1077-1097
Hauptverfasser: Broadie, Mark, Du, Yiping, Moallemi, Ciamac C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1097
container_issue 5
container_start_page 1077
container_title Operations research
container_volume 63
creator Broadie, Mark
Du, Yiping
Moallemi, Ciamac C.
description We introduce a regression-based nested Monte Carlo simulation method for the estimation of financial risk. An outer simulation level is used to generate financial risk factors and an inner simulation level is used to price securities and compute portfolio losses given risk factor outcomes. The mean squared error (MSE) of standard nested simulation converges at the rate k −2/3 , where k measures computational effort. The proposed regression method combines information from different risk factor realizations to provide a better estimate of the portfolio loss function. The MSE of the regression method converges at the rate k −1 until reaching an asymptotic bias level which depends on the magnitude of the regression error. Numerical results consistent with our theoretical analysis are provided and numerical comparisons with other methods are also given.
doi_str_mv 10.1287/opre.2015.1419
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracgeneralonefile_A434514050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A434514050</galeid><jstor_id>24540434</jstor_id><sourcerecordid>A434514050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c670t-9b6a7af1e4c1e88a31d9d31fe8be702a3b28bd5ea8211df072552285082e2fe33</originalsourceid><addsrcrecordid>eNqFkctLAzEQxoMoWB9Xb0pB8OTWvHd7lFIfIAii4C1kd2fX1Ha3ZrKi_71ZKmqhIDkMGX7fl8x8hBwxOmI8Sy_apYcRp0yNmGTjLTJgiutESS22yYBSQROh5fMu2UOcUUrHSqsBOXlw-DqcYnALG1zbDN-dHT5A7QExXg_ITmXnCIffdZ88XU0fJzfJ3f317eTyLil0SkMyzrVNbcVAFgyyzApWjkvBKshySCm3IudZXiqwGWesrGjKleI8UzTjwCsQYp-crnyXvn3rAIOZtZ1v4pOG6zTVOg4of6nazsG4pmqDt8XCYWEupZCKSapopJINVA0NeDtvG6hcbK_xow18PCUsXLFRcLYmiEyAj1DbDtGsg-d_wLxD1_RrbdDVLwFX_KaPFL5F9FCZpY-x-E_DqOkjNn3Epo_Y9BFHwfFKMMPQ-h-aSyVptP3dRD-UX-B_fl-PQq0t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677662874</pqid></control><display><type>article</type><title>Risk Estimation via Regression</title><source>Jstor Complete Legacy</source><source>Informs</source><source>EBSCOhost Business Source Complete</source><creator>Broadie, Mark ; Du, Yiping ; Moallemi, Ciamac C.</creator><creatorcontrib>Broadie, Mark ; Du, Yiping ; Moallemi, Ciamac C.</creatorcontrib><description>We introduce a regression-based nested Monte Carlo simulation method for the estimation of financial risk. An outer simulation level is used to generate financial risk factors and an inner simulation level is used to price securities and compute portfolio losses given risk factor outcomes. The mean squared error (MSE) of standard nested simulation converges at the rate k −2/3 , where k measures computational effort. The proposed regression method combines information from different risk factor realizations to provide a better estimate of the portfolio loss function. The MSE of the regression method converges at the rate k −1 until reaching an asymptotic bias level which depends on the magnitude of the regression error. Numerical results consistent with our theoretical analysis are provided and numerical comparisons with other methods are also given.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.2015.1419</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Analysis ; Asymptotic methods ; CONTEXTUAL AREAS ; Convergence ; decision analysis: risk ; Estimating techniques ; Financial risk ; Mean square errors ; Monte Carlo method ; Monte Carlo simulation ; Operations research ; Regression ; Regression analysis ; Risk analysis ; Risk assessment ; Simulation ; statistics: estimation</subject><ispartof>Operations research, 2015-09, Vol.63 (5), p.1077-1097</ispartof><rights>2015 INFORMS</rights><rights>COPYRIGHT 2015 Institute for Operations Research and the Management Sciences</rights><rights>COPYRIGHT 2015 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Sep/Oct 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c670t-9b6a7af1e4c1e88a31d9d31fe8be702a3b28bd5ea8211df072552285082e2fe33</citedby><cites>FETCH-LOGICAL-c670t-9b6a7af1e4c1e88a31d9d31fe8be702a3b28bd5ea8211df072552285082e2fe33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24540434$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.2015.1419$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,799,3679,27901,27902,57992,58225,62589</link.rule.ids></links><search><creatorcontrib>Broadie, Mark</creatorcontrib><creatorcontrib>Du, Yiping</creatorcontrib><creatorcontrib>Moallemi, Ciamac C.</creatorcontrib><title>Risk Estimation via Regression</title><title>Operations research</title><description>We introduce a regression-based nested Monte Carlo simulation method for the estimation of financial risk. An outer simulation level is used to generate financial risk factors and an inner simulation level is used to price securities and compute portfolio losses given risk factor outcomes. The mean squared error (MSE) of standard nested simulation converges at the rate k −2/3 , where k measures computational effort. The proposed regression method combines information from different risk factor realizations to provide a better estimate of the portfolio loss function. The MSE of the regression method converges at the rate k −1 until reaching an asymptotic bias level which depends on the magnitude of the regression error. Numerical results consistent with our theoretical analysis are provided and numerical comparisons with other methods are also given.</description><subject>Analysis</subject><subject>Asymptotic methods</subject><subject>CONTEXTUAL AREAS</subject><subject>Convergence</subject><subject>decision analysis: risk</subject><subject>Estimating techniques</subject><subject>Financial risk</subject><subject>Mean square errors</subject><subject>Monte Carlo method</subject><subject>Monte Carlo simulation</subject><subject>Operations research</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Risk analysis</subject><subject>Risk assessment</subject><subject>Simulation</subject><subject>statistics: estimation</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFkctLAzEQxoMoWB9Xb0pB8OTWvHd7lFIfIAii4C1kd2fX1Ha3ZrKi_71ZKmqhIDkMGX7fl8x8hBwxOmI8Sy_apYcRp0yNmGTjLTJgiutESS22yYBSQROh5fMu2UOcUUrHSqsBOXlw-DqcYnALG1zbDN-dHT5A7QExXg_ITmXnCIffdZ88XU0fJzfJ3f317eTyLil0SkMyzrVNbcVAFgyyzApWjkvBKshySCm3IudZXiqwGWesrGjKleI8UzTjwCsQYp-crnyXvn3rAIOZtZ1v4pOG6zTVOg4of6nazsG4pmqDt8XCYWEupZCKSapopJINVA0NeDtvG6hcbK_xow18PCUsXLFRcLYmiEyAj1DbDtGsg-d_wLxD1_RrbdDVLwFX_KaPFL5F9FCZpY-x-E_DqOkjNn3Epo_Y9BFHwfFKMMPQ-h-aSyVptP3dRD-UX-B_fl-PQq0t</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Broadie, Mark</creator><creator>Du, Yiping</creator><creator>Moallemi, Ciamac C.</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>JQ2</scope><scope>K9.</scope></search><sort><creationdate>20150901</creationdate><title>Risk Estimation via Regression</title><author>Broadie, Mark ; Du, Yiping ; Moallemi, Ciamac C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c670t-9b6a7af1e4c1e88a31d9d31fe8be702a3b28bd5ea8211df072552285082e2fe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Asymptotic methods</topic><topic>CONTEXTUAL AREAS</topic><topic>Convergence</topic><topic>decision analysis: risk</topic><topic>Estimating techniques</topic><topic>Financial risk</topic><topic>Mean square errors</topic><topic>Monte Carlo method</topic><topic>Monte Carlo simulation</topic><topic>Operations research</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Risk analysis</topic><topic>Risk assessment</topic><topic>Simulation</topic><topic>statistics: estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Broadie, Mark</creatorcontrib><creatorcontrib>Du, Yiping</creatorcontrib><creatorcontrib>Moallemi, Ciamac C.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Broadie, Mark</au><au>Du, Yiping</au><au>Moallemi, Ciamac C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk Estimation via Regression</atitle><jtitle>Operations research</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>63</volume><issue>5</issue><spage>1077</spage><epage>1097</epage><pages>1077-1097</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><abstract>We introduce a regression-based nested Monte Carlo simulation method for the estimation of financial risk. An outer simulation level is used to generate financial risk factors and an inner simulation level is used to price securities and compute portfolio losses given risk factor outcomes. The mean squared error (MSE) of standard nested simulation converges at the rate k −2/3 , where k measures computational effort. The proposed regression method combines information from different risk factor realizations to provide a better estimate of the portfolio loss function. The MSE of the regression method converges at the rate k −1 until reaching an asymptotic bias level which depends on the magnitude of the regression error. Numerical results consistent with our theoretical analysis are provided and numerical comparisons with other methods are also given.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/opre.2015.1419</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0030-364X
ispartof Operations research, 2015-09, Vol.63 (5), p.1077-1097
issn 0030-364X
1526-5463
language eng
recordid cdi_gale_infotracgeneralonefile_A434514050
source Jstor Complete Legacy; Informs; EBSCOhost Business Source Complete
subjects Analysis
Asymptotic methods
CONTEXTUAL AREAS
Convergence
decision analysis: risk
Estimating techniques
Financial risk
Mean square errors
Monte Carlo method
Monte Carlo simulation
Operations research
Regression
Regression analysis
Risk analysis
Risk assessment
Simulation
statistics: estimation
title Risk Estimation via Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk%20Estimation%20via%20Regression&rft.jtitle=Operations%20research&rft.au=Broadie,%20Mark&rft.date=2015-09-01&rft.volume=63&rft.issue=5&rft.spage=1077&rft.epage=1097&rft.pages=1077-1097&rft.issn=0030-364X&rft.eissn=1526-5463&rft_id=info:doi/10.1287/opre.2015.1419&rft_dat=%3Cgale_cross%3EA434514050%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677662874&rft_id=info:pmid/&rft_galeid=A434514050&rft_jstor_id=24540434&rfr_iscdi=true