Automated Bed Assignments in a Complex and Dynamic Hospital Environment
Bed management, an important function of any hospital, has a major impact on patient care, patient flow, patient and staff satisfaction, and ultimately on the hospital’s operating margin. A key challenge in bed management is optimizing the bed-assignment process in a complex and dynamic operating en...
Gespeichert in:
Veröffentlicht in: | Interfaces (Providence) 2013-09, Vol.43 (5), p.435-448 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 448 |
---|---|
container_issue | 5 |
container_start_page | 435 |
container_title | Interfaces (Providence) |
container_volume | 43 |
creator | Thomas, Bex George Bollapragada, Srinivas Akbay, Kunter Toledano, David Katlic, Peter Dulgeroglu, Onur Yang, Dan |
description | Bed management, an important function of any hospital, has a major impact on patient care, patient flow, patient and staff satisfaction, and ultimately on the hospital’s operating margin. A key challenge in bed management is optimizing the bed-assignment process in a complex and dynamic operating environment. Efficient bed assignment requires the merging of clinical information, hospital operations information, interdependencies between units, and real-time information on patients, resources, and workflows. We have developed analytical decision support tools with embedded mathematical models to periodically recommend bed-patient assignments. Using an innovative mixed-integer goal-programming modeling approach, we are able to accommodate the multiple goals and complex operating rules of different hospitals. We implemented and hosted our prototype bed-assignment solution as a cloud-based application for Mount Sinai Medical Center in New York. |
doi_str_mv | 10.1287/inte.2013.0701 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracgeneralonefile_A351081114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A351081114</galeid><jstor_id>43699330</jstor_id><sourcerecordid>A351081114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c632t-8594c8848d8aba60750265f3f34ca2d4c5189d7e50d8c30b74cc4415a257a0353</originalsourceid><addsrcrecordid>eNqFks1rFDEYxoMouFav3oQBLx6c9X3zMZM5rmtthYIXBW8hm8msWWaSNcmI_e_NtKVVWZAQAuH3PLwfDyEvEdZIZfvO-WzXFJCtoQV8RFYoaFMLgd8ekxVAR2uKQJ-SZykdAAAbiStysZlzmHS2ffW-3E1Kbu8n63OqnK90tQ3TcbS_Ku376sO115Mz1WVIR5f1WJ37ny6GG_w5eTLoMdkXd-8Z-frx_Mv2sr76fPFpu7mqTcNorqXouJGSy17qnW6gFUAbMbCBcaNpz41A2fWtFdBLw2DXcmM4R6GpaDUwwc7Im1vfYww_Zpuymlwydhy1t2FOCnkjRdPyFgv6-h_0EOboS3WFEqWSjjN4oPZ6tMr5IeSozWKqNkwgSETkhapPUHvrbdRj8HZw5fsvfn2CL6e3ZYInBW__EOzm5Lwtu_BlHd9z2us5pZP-JoaUoh3UMbpJx2uFoJY0qCUNakmDWtJQBK9uBYeUQ7ynOWu6jt2M4a7BpdY4pf_5_QZbxbv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1458599430</pqid></control><display><type>article</type><title>Automated Bed Assignments in a Complex and Dynamic Hospital Environment</title><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Thomas, Bex George ; Bollapragada, Srinivas ; Akbay, Kunter ; Toledano, David ; Katlic, Peter ; Dulgeroglu, Onur ; Yang, Dan</creator><creatorcontrib>Thomas, Bex George ; Bollapragada, Srinivas ; Akbay, Kunter ; Toledano, David ; Katlic, Peter ; Dulgeroglu, Onur ; Yang, Dan</creatorcontrib><description>Bed management, an important function of any hospital, has a major impact on patient care, patient flow, patient and staff satisfaction, and ultimately on the hospital’s operating margin. A key challenge in bed management is optimizing the bed-assignment process in a complex and dynamic operating environment. Efficient bed assignment requires the merging of clinical information, hospital operations information, interdependencies between units, and real-time information on patients, resources, and workflows. We have developed analytical decision support tools with embedded mathematical models to periodically recommend bed-patient assignments. Using an innovative mixed-integer goal-programming modeling approach, we are able to accommodate the multiple goals and complex operating rules of different hospitals. We implemented and hosted our prototype bed-assignment solution as a cloud-based application for Mount Sinai Medical Center in New York.</description><identifier>ISSN: 0092-2102</identifier><identifier>ISSN: 2644-0865</identifier><identifier>EISSN: 1526-551X</identifier><identifier>EISSN: 2644-0873</identifier><identifier>DOI: 10.1287/inte.2013.0701</identifier><identifier>CODEN: INFAC4</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Analysis ; Asset management ; Assignment problem ; Automation ; Beds ; Cloud computing ; Costs ; Decision making ; Decision support systems ; Electrical equipment and supplies industry ; Emergency medical care ; Goal programming ; Health centres ; Health services ; Hospital administration ; hospital bed management ; Hospital management ; Hospital services ; Hospital staff ; Hospitals ; Human error ; Literature reviews ; Mathematical programming ; New York ; Optimization ; Patient satisfaction ; Patients ; Studies ; U.S.A</subject><ispartof>Interfaces (Providence), 2013-09, Vol.43 (5), p.435-448</ispartof><rights>2013 INFORMS</rights><rights>COPYRIGHT 2013 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Sep/Oct 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c632t-8594c8848d8aba60750265f3f34ca2d4c5189d7e50d8c30b74cc4415a257a0353</citedby><cites>FETCH-LOGICAL-c632t-8594c8848d8aba60750265f3f34ca2d4c5189d7e50d8c30b74cc4415a257a0353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubsonline.informs.org/doi/epdf/10.1287/inte.2013.0701$$EPDF$$P50$$Ginforms$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/inte.2013.0701$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,3690,27923,27924,58016,58249,62615,62617</link.rule.ids></links><search><creatorcontrib>Thomas, Bex George</creatorcontrib><creatorcontrib>Bollapragada, Srinivas</creatorcontrib><creatorcontrib>Akbay, Kunter</creatorcontrib><creatorcontrib>Toledano, David</creatorcontrib><creatorcontrib>Katlic, Peter</creatorcontrib><creatorcontrib>Dulgeroglu, Onur</creatorcontrib><creatorcontrib>Yang, Dan</creatorcontrib><title>Automated Bed Assignments in a Complex and Dynamic Hospital Environment</title><title>Interfaces (Providence)</title><description>Bed management, an important function of any hospital, has a major impact on patient care, patient flow, patient and staff satisfaction, and ultimately on the hospital’s operating margin. A key challenge in bed management is optimizing the bed-assignment process in a complex and dynamic operating environment. Efficient bed assignment requires the merging of clinical information, hospital operations information, interdependencies between units, and real-time information on patients, resources, and workflows. We have developed analytical decision support tools with embedded mathematical models to periodically recommend bed-patient assignments. Using an innovative mixed-integer goal-programming modeling approach, we are able to accommodate the multiple goals and complex operating rules of different hospitals. We implemented and hosted our prototype bed-assignment solution as a cloud-based application for Mount Sinai Medical Center in New York.</description><subject>Analysis</subject><subject>Asset management</subject><subject>Assignment problem</subject><subject>Automation</subject><subject>Beds</subject><subject>Cloud computing</subject><subject>Costs</subject><subject>Decision making</subject><subject>Decision support systems</subject><subject>Electrical equipment and supplies industry</subject><subject>Emergency medical care</subject><subject>Goal programming</subject><subject>Health centres</subject><subject>Health services</subject><subject>Hospital administration</subject><subject>hospital bed management</subject><subject>Hospital management</subject><subject>Hospital services</subject><subject>Hospital staff</subject><subject>Hospitals</subject><subject>Human error</subject><subject>Literature reviews</subject><subject>Mathematical programming</subject><subject>New York</subject><subject>Optimization</subject><subject>Patient satisfaction</subject><subject>Patients</subject><subject>Studies</subject><subject>U.S.A</subject><issn>0092-2102</issn><issn>2644-0865</issn><issn>1526-551X</issn><issn>2644-0873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFks1rFDEYxoMouFav3oQBLx6c9X3zMZM5rmtthYIXBW8hm8msWWaSNcmI_e_NtKVVWZAQAuH3PLwfDyEvEdZIZfvO-WzXFJCtoQV8RFYoaFMLgd8ekxVAR2uKQJ-SZykdAAAbiStysZlzmHS2ffW-3E1Kbu8n63OqnK90tQ3TcbS_Ku376sO115Mz1WVIR5f1WJ37ny6GG_w5eTLoMdkXd-8Z-frx_Mv2sr76fPFpu7mqTcNorqXouJGSy17qnW6gFUAbMbCBcaNpz41A2fWtFdBLw2DXcmM4R6GpaDUwwc7Im1vfYww_Zpuymlwydhy1t2FOCnkjRdPyFgv6-h_0EOboS3WFEqWSjjN4oPZ6tMr5IeSozWKqNkwgSETkhapPUHvrbdRj8HZw5fsvfn2CL6e3ZYInBW__EOzm5Lwtu_BlHd9z2us5pZP-JoaUoh3UMbpJx2uFoJY0qCUNakmDWtJQBK9uBYeUQ7ynOWu6jt2M4a7BpdY4pf_5_QZbxbv8</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Thomas, Bex George</creator><creator>Bollapragada, Srinivas</creator><creator>Akbay, Kunter</creator><creator>Toledano, David</creator><creator>Katlic, Peter</creator><creator>Dulgeroglu, Onur</creator><creator>Yang, Dan</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20130901</creationdate><title>Automated Bed Assignments in a Complex and Dynamic Hospital Environment</title><author>Thomas, Bex George ; Bollapragada, Srinivas ; Akbay, Kunter ; Toledano, David ; Katlic, Peter ; Dulgeroglu, Onur ; Yang, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c632t-8594c8848d8aba60750265f3f34ca2d4c5189d7e50d8c30b74cc4415a257a0353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Asset management</topic><topic>Assignment problem</topic><topic>Automation</topic><topic>Beds</topic><topic>Cloud computing</topic><topic>Costs</topic><topic>Decision making</topic><topic>Decision support systems</topic><topic>Electrical equipment and supplies industry</topic><topic>Emergency medical care</topic><topic>Goal programming</topic><topic>Health centres</topic><topic>Health services</topic><topic>Hospital administration</topic><topic>hospital bed management</topic><topic>Hospital management</topic><topic>Hospital services</topic><topic>Hospital staff</topic><topic>Hospitals</topic><topic>Human error</topic><topic>Literature reviews</topic><topic>Mathematical programming</topic><topic>New York</topic><topic>Optimization</topic><topic>Patient satisfaction</topic><topic>Patients</topic><topic>Studies</topic><topic>U.S.A</topic><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Bex George</creatorcontrib><creatorcontrib>Bollapragada, Srinivas</creatorcontrib><creatorcontrib>Akbay, Kunter</creatorcontrib><creatorcontrib>Toledano, David</creatorcontrib><creatorcontrib>Katlic, Peter</creatorcontrib><creatorcontrib>Dulgeroglu, Onur</creatorcontrib><creatorcontrib>Yang, Dan</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Interfaces (Providence)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Bex George</au><au>Bollapragada, Srinivas</au><au>Akbay, Kunter</au><au>Toledano, David</au><au>Katlic, Peter</au><au>Dulgeroglu, Onur</au><au>Yang, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Bed Assignments in a Complex and Dynamic Hospital Environment</atitle><jtitle>Interfaces (Providence)</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>43</volume><issue>5</issue><spage>435</spage><epage>448</epage><pages>435-448</pages><issn>0092-2102</issn><issn>2644-0865</issn><eissn>1526-551X</eissn><eissn>2644-0873</eissn><coden>INFAC4</coden><abstract>Bed management, an important function of any hospital, has a major impact on patient care, patient flow, patient and staff satisfaction, and ultimately on the hospital’s operating margin. A key challenge in bed management is optimizing the bed-assignment process in a complex and dynamic operating environment. Efficient bed assignment requires the merging of clinical information, hospital operations information, interdependencies between units, and real-time information on patients, resources, and workflows. We have developed analytical decision support tools with embedded mathematical models to periodically recommend bed-patient assignments. Using an innovative mixed-integer goal-programming modeling approach, we are able to accommodate the multiple goals and complex operating rules of different hospitals. We implemented and hosted our prototype bed-assignment solution as a cloud-based application for Mount Sinai Medical Center in New York.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/inte.2013.0701</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-2102 |
ispartof | Interfaces (Providence), 2013-09, Vol.43 (5), p.435-448 |
issn | 0092-2102 2644-0865 1526-551X 2644-0873 |
language | eng |
recordid | cdi_gale_infotracgeneralonefile_A351081114 |
source | INFORMS PubsOnLine; Business Source Complete; JSTOR Archive Collection A-Z Listing |
subjects | Analysis Asset management Assignment problem Automation Beds Cloud computing Costs Decision making Decision support systems Electrical equipment and supplies industry Emergency medical care Goal programming Health centres Health services Hospital administration hospital bed management Hospital management Hospital services Hospital staff Hospitals Human error Literature reviews Mathematical programming New York Optimization Patient satisfaction Patients Studies U.S.A |
title | Automated Bed Assignments in a Complex and Dynamic Hospital Environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Bed%20Assignments%20in%20a%20Complex%20and%20Dynamic%20Hospital%20Environment&rft.jtitle=Interfaces%20(Providence)&rft.au=Thomas,%20Bex%20George&rft.date=2013-09-01&rft.volume=43&rft.issue=5&rft.spage=435&rft.epage=448&rft.pages=435-448&rft.issn=0092-2102&rft.eissn=1526-551X&rft.coden=INFAC4&rft_id=info:doi/10.1287/inte.2013.0701&rft_dat=%3Cgale_proqu%3EA351081114%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1458599430&rft_id=info:pmid/&rft_galeid=A351081114&rft_jstor_id=43699330&rfr_iscdi=true |