Automated Bed Assignments in a Complex and Dynamic Hospital Environment

Bed management, an important function of any hospital, has a major impact on patient care, patient flow, patient and staff satisfaction, and ultimately on the hospital’s operating margin. A key challenge in bed management is optimizing the bed-assignment process in a complex and dynamic operating en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Interfaces (Providence) 2013-09, Vol.43 (5), p.435-448
Hauptverfasser: Thomas, Bex George, Bollapragada, Srinivas, Akbay, Kunter, Toledano, David, Katlic, Peter, Dulgeroglu, Onur, Yang, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 448
container_issue 5
container_start_page 435
container_title Interfaces (Providence)
container_volume 43
creator Thomas, Bex George
Bollapragada, Srinivas
Akbay, Kunter
Toledano, David
Katlic, Peter
Dulgeroglu, Onur
Yang, Dan
description Bed management, an important function of any hospital, has a major impact on patient care, patient flow, patient and staff satisfaction, and ultimately on the hospital’s operating margin. A key challenge in bed management is optimizing the bed-assignment process in a complex and dynamic operating environment. Efficient bed assignment requires the merging of clinical information, hospital operations information, interdependencies between units, and real-time information on patients, resources, and workflows. We have developed analytical decision support tools with embedded mathematical models to periodically recommend bed-patient assignments. Using an innovative mixed-integer goal-programming modeling approach, we are able to accommodate the multiple goals and complex operating rules of different hospitals. We implemented and hosted our prototype bed-assignment solution as a cloud-based application for Mount Sinai Medical Center in New York.
doi_str_mv 10.1287/inte.2013.0701
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracgeneralonefile_A351081114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A351081114</galeid><jstor_id>43699330</jstor_id><sourcerecordid>A351081114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c632t-8594c8848d8aba60750265f3f34ca2d4c5189d7e50d8c30b74cc4415a257a0353</originalsourceid><addsrcrecordid>eNqFks1rFDEYxoMouFav3oQBLx6c9X3zMZM5rmtthYIXBW8hm8msWWaSNcmI_e_NtKVVWZAQAuH3PLwfDyEvEdZIZfvO-WzXFJCtoQV8RFYoaFMLgd8ekxVAR2uKQJ-SZykdAAAbiStysZlzmHS2ffW-3E1Kbu8n63OqnK90tQ3TcbS_Ku376sO115Mz1WVIR5f1WJ37ny6GG_w5eTLoMdkXd-8Z-frx_Mv2sr76fPFpu7mqTcNorqXouJGSy17qnW6gFUAbMbCBcaNpz41A2fWtFdBLw2DXcmM4R6GpaDUwwc7Im1vfYww_Zpuymlwydhy1t2FOCnkjRdPyFgv6-h_0EOboS3WFEqWSjjN4oPZ6tMr5IeSozWKqNkwgSETkhapPUHvrbdRj8HZw5fsvfn2CL6e3ZYInBW__EOzm5Lwtu_BlHd9z2us5pZP-JoaUoh3UMbpJx2uFoJY0qCUNakmDWtJQBK9uBYeUQ7ynOWu6jt2M4a7BpdY4pf_5_QZbxbv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1458599430</pqid></control><display><type>article</type><title>Automated Bed Assignments in a Complex and Dynamic Hospital Environment</title><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Thomas, Bex George ; Bollapragada, Srinivas ; Akbay, Kunter ; Toledano, David ; Katlic, Peter ; Dulgeroglu, Onur ; Yang, Dan</creator><creatorcontrib>Thomas, Bex George ; Bollapragada, Srinivas ; Akbay, Kunter ; Toledano, David ; Katlic, Peter ; Dulgeroglu, Onur ; Yang, Dan</creatorcontrib><description>Bed management, an important function of any hospital, has a major impact on patient care, patient flow, patient and staff satisfaction, and ultimately on the hospital’s operating margin. A key challenge in bed management is optimizing the bed-assignment process in a complex and dynamic operating environment. Efficient bed assignment requires the merging of clinical information, hospital operations information, interdependencies between units, and real-time information on patients, resources, and workflows. We have developed analytical decision support tools with embedded mathematical models to periodically recommend bed-patient assignments. Using an innovative mixed-integer goal-programming modeling approach, we are able to accommodate the multiple goals and complex operating rules of different hospitals. We implemented and hosted our prototype bed-assignment solution as a cloud-based application for Mount Sinai Medical Center in New York.</description><identifier>ISSN: 0092-2102</identifier><identifier>ISSN: 2644-0865</identifier><identifier>EISSN: 1526-551X</identifier><identifier>EISSN: 2644-0873</identifier><identifier>DOI: 10.1287/inte.2013.0701</identifier><identifier>CODEN: INFAC4</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Analysis ; Asset management ; Assignment problem ; Automation ; Beds ; Cloud computing ; Costs ; Decision making ; Decision support systems ; Electrical equipment and supplies industry ; Emergency medical care ; Goal programming ; Health centres ; Health services ; Hospital administration ; hospital bed management ; Hospital management ; Hospital services ; Hospital staff ; Hospitals ; Human error ; Literature reviews ; Mathematical programming ; New York ; Optimization ; Patient satisfaction ; Patients ; Studies ; U.S.A</subject><ispartof>Interfaces (Providence), 2013-09, Vol.43 (5), p.435-448</ispartof><rights>2013 INFORMS</rights><rights>COPYRIGHT 2013 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Sep/Oct 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c632t-8594c8848d8aba60750265f3f34ca2d4c5189d7e50d8c30b74cc4415a257a0353</citedby><cites>FETCH-LOGICAL-c632t-8594c8848d8aba60750265f3f34ca2d4c5189d7e50d8c30b74cc4415a257a0353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubsonline.informs.org/doi/epdf/10.1287/inte.2013.0701$$EPDF$$P50$$Ginforms$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/inte.2013.0701$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,3690,27923,27924,58016,58249,62615,62617</link.rule.ids></links><search><creatorcontrib>Thomas, Bex George</creatorcontrib><creatorcontrib>Bollapragada, Srinivas</creatorcontrib><creatorcontrib>Akbay, Kunter</creatorcontrib><creatorcontrib>Toledano, David</creatorcontrib><creatorcontrib>Katlic, Peter</creatorcontrib><creatorcontrib>Dulgeroglu, Onur</creatorcontrib><creatorcontrib>Yang, Dan</creatorcontrib><title>Automated Bed Assignments in a Complex and Dynamic Hospital Environment</title><title>Interfaces (Providence)</title><description>Bed management, an important function of any hospital, has a major impact on patient care, patient flow, patient and staff satisfaction, and ultimately on the hospital’s operating margin. A key challenge in bed management is optimizing the bed-assignment process in a complex and dynamic operating environment. Efficient bed assignment requires the merging of clinical information, hospital operations information, interdependencies between units, and real-time information on patients, resources, and workflows. We have developed analytical decision support tools with embedded mathematical models to periodically recommend bed-patient assignments. Using an innovative mixed-integer goal-programming modeling approach, we are able to accommodate the multiple goals and complex operating rules of different hospitals. We implemented and hosted our prototype bed-assignment solution as a cloud-based application for Mount Sinai Medical Center in New York.</description><subject>Analysis</subject><subject>Asset management</subject><subject>Assignment problem</subject><subject>Automation</subject><subject>Beds</subject><subject>Cloud computing</subject><subject>Costs</subject><subject>Decision making</subject><subject>Decision support systems</subject><subject>Electrical equipment and supplies industry</subject><subject>Emergency medical care</subject><subject>Goal programming</subject><subject>Health centres</subject><subject>Health services</subject><subject>Hospital administration</subject><subject>hospital bed management</subject><subject>Hospital management</subject><subject>Hospital services</subject><subject>Hospital staff</subject><subject>Hospitals</subject><subject>Human error</subject><subject>Literature reviews</subject><subject>Mathematical programming</subject><subject>New York</subject><subject>Optimization</subject><subject>Patient satisfaction</subject><subject>Patients</subject><subject>Studies</subject><subject>U.S.A</subject><issn>0092-2102</issn><issn>2644-0865</issn><issn>1526-551X</issn><issn>2644-0873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFks1rFDEYxoMouFav3oQBLx6c9X3zMZM5rmtthYIXBW8hm8msWWaSNcmI_e_NtKVVWZAQAuH3PLwfDyEvEdZIZfvO-WzXFJCtoQV8RFYoaFMLgd8ekxVAR2uKQJ-SZykdAAAbiStysZlzmHS2ffW-3E1Kbu8n63OqnK90tQ3TcbS_Ku376sO115Mz1WVIR5f1WJ37ny6GG_w5eTLoMdkXd-8Z-frx_Mv2sr76fPFpu7mqTcNorqXouJGSy17qnW6gFUAbMbCBcaNpz41A2fWtFdBLw2DXcmM4R6GpaDUwwc7Im1vfYww_Zpuymlwydhy1t2FOCnkjRdPyFgv6-h_0EOboS3WFEqWSjjN4oPZ6tMr5IeSozWKqNkwgSETkhapPUHvrbdRj8HZw5fsvfn2CL6e3ZYInBW__EOzm5Lwtu_BlHd9z2us5pZP-JoaUoh3UMbpJx2uFoJY0qCUNakmDWtJQBK9uBYeUQ7ynOWu6jt2M4a7BpdY4pf_5_QZbxbv8</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Thomas, Bex George</creator><creator>Bollapragada, Srinivas</creator><creator>Akbay, Kunter</creator><creator>Toledano, David</creator><creator>Katlic, Peter</creator><creator>Dulgeroglu, Onur</creator><creator>Yang, Dan</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20130901</creationdate><title>Automated Bed Assignments in a Complex and Dynamic Hospital Environment</title><author>Thomas, Bex George ; Bollapragada, Srinivas ; Akbay, Kunter ; Toledano, David ; Katlic, Peter ; Dulgeroglu, Onur ; Yang, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c632t-8594c8848d8aba60750265f3f34ca2d4c5189d7e50d8c30b74cc4415a257a0353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Asset management</topic><topic>Assignment problem</topic><topic>Automation</topic><topic>Beds</topic><topic>Cloud computing</topic><topic>Costs</topic><topic>Decision making</topic><topic>Decision support systems</topic><topic>Electrical equipment and supplies industry</topic><topic>Emergency medical care</topic><topic>Goal programming</topic><topic>Health centres</topic><topic>Health services</topic><topic>Hospital administration</topic><topic>hospital bed management</topic><topic>Hospital management</topic><topic>Hospital services</topic><topic>Hospital staff</topic><topic>Hospitals</topic><topic>Human error</topic><topic>Literature reviews</topic><topic>Mathematical programming</topic><topic>New York</topic><topic>Optimization</topic><topic>Patient satisfaction</topic><topic>Patients</topic><topic>Studies</topic><topic>U.S.A</topic><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Bex George</creatorcontrib><creatorcontrib>Bollapragada, Srinivas</creatorcontrib><creatorcontrib>Akbay, Kunter</creatorcontrib><creatorcontrib>Toledano, David</creatorcontrib><creatorcontrib>Katlic, Peter</creatorcontrib><creatorcontrib>Dulgeroglu, Onur</creatorcontrib><creatorcontrib>Yang, Dan</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Interfaces (Providence)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Bex George</au><au>Bollapragada, Srinivas</au><au>Akbay, Kunter</au><au>Toledano, David</au><au>Katlic, Peter</au><au>Dulgeroglu, Onur</au><au>Yang, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Bed Assignments in a Complex and Dynamic Hospital Environment</atitle><jtitle>Interfaces (Providence)</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>43</volume><issue>5</issue><spage>435</spage><epage>448</epage><pages>435-448</pages><issn>0092-2102</issn><issn>2644-0865</issn><eissn>1526-551X</eissn><eissn>2644-0873</eissn><coden>INFAC4</coden><abstract>Bed management, an important function of any hospital, has a major impact on patient care, patient flow, patient and staff satisfaction, and ultimately on the hospital’s operating margin. A key challenge in bed management is optimizing the bed-assignment process in a complex and dynamic operating environment. Efficient bed assignment requires the merging of clinical information, hospital operations information, interdependencies between units, and real-time information on patients, resources, and workflows. We have developed analytical decision support tools with embedded mathematical models to periodically recommend bed-patient assignments. Using an innovative mixed-integer goal-programming modeling approach, we are able to accommodate the multiple goals and complex operating rules of different hospitals. We implemented and hosted our prototype bed-assignment solution as a cloud-based application for Mount Sinai Medical Center in New York.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/inte.2013.0701</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0092-2102
ispartof Interfaces (Providence), 2013-09, Vol.43 (5), p.435-448
issn 0092-2102
2644-0865
1526-551X
2644-0873
language eng
recordid cdi_gale_infotracgeneralonefile_A351081114
source INFORMS PubsOnLine; Business Source Complete; JSTOR Archive Collection A-Z Listing
subjects Analysis
Asset management
Assignment problem
Automation
Beds
Cloud computing
Costs
Decision making
Decision support systems
Electrical equipment and supplies industry
Emergency medical care
Goal programming
Health centres
Health services
Hospital administration
hospital bed management
Hospital management
Hospital services
Hospital staff
Hospitals
Human error
Literature reviews
Mathematical programming
New York
Optimization
Patient satisfaction
Patients
Studies
U.S.A
title Automated Bed Assignments in a Complex and Dynamic Hospital Environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Bed%20Assignments%20in%20a%20Complex%20and%20Dynamic%20Hospital%20Environment&rft.jtitle=Interfaces%20(Providence)&rft.au=Thomas,%20Bex%20George&rft.date=2013-09-01&rft.volume=43&rft.issue=5&rft.spage=435&rft.epage=448&rft.pages=435-448&rft.issn=0092-2102&rft.eissn=1526-551X&rft.coden=INFAC4&rft_id=info:doi/10.1287/inte.2013.0701&rft_dat=%3Cgale_proqu%3EA351081114%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1458599430&rft_id=info:pmid/&rft_galeid=A351081114&rft_jstor_id=43699330&rfr_iscdi=true