A Metaheuristic Approach for the Vertex Coloring Problem
Given an undirected graph G = ( V, E ), the vertex coloring problem (VCP) requires to assign a color to each vertex in such a way that colors on adjacent vertices are different and the number of colors used is minimized. In this paper, we propose a metaheuristic approach for VCP that performs two ph...
Gespeichert in:
Veröffentlicht in: | INFORMS journal on computing 2008-05, Vol.20 (2), p.302-316 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 316 |
---|---|
container_issue | 2 |
container_start_page | 302 |
container_title | INFORMS journal on computing |
container_volume | 20 |
creator | Malaguti, Enrico Monaci, Michele Toth, Paolo |
description | Given an undirected graph G = ( V, E ), the vertex coloring problem (VCP) requires to assign a color to each vertex in such a way that colors on adjacent vertices are different and the number of colors used is minimized. In this paper, we propose a metaheuristic approach for VCP that performs two phases: the first phase is based on an evolutionary algorithm, whereas the second one is a postoptimization phase based on the set covering formulation of the problem. Computational results on a set of DIMACS instances show that the overall algorithm is able to produce high-quality solutions in a reasonable amount of time. For four instances, the proposed algorithm is able to improve the best-known solution while for almost all the remaining instances, it finds the best-known solution in the literature. |
doi_str_mv | 10.1287/ijoc.1070.0245 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracgeneralonefile_A182605426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A182605426</galeid><sourcerecordid>A182605426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-d27e2cb2664b7709dd6bd5d8e8a93071d09e4878e006018f283c4df90deb1c4d3</originalsourceid><addsrcrecordid>eNqFkc1LxDAQxYsouK5ePRf12nWSNmlyXBa_YEUP6jW0yXSbpW3WpIv639uyggiizGGG4fdmHrwoOiUwI1Tkl3bt9IxADjOgGduLJoRRnjBGxf4wgySJFIwfRkchrAEgSzM5icQ8vse-qHHrbeitjuebjXeFruPK-bivMX5B3-N7vHCN87ZbxY_elQ22x9FBVTQBT776NHq-vnpa3CbLh5u7xXyZ6IyzPjE0R6pLynlW5jlIY3hpmBEoCplCTgxIzEQuEIADERUVqc5MJcFgSYYpnUZnu7uDrdcthl6t3dZ3w0tFAVgqqWQDdL6DVkWDynaV632hWxu0mhNBObCM8oFKfqFW2KEvGtdhZYf1D372Cz-UwdbqvwTauxA8VmrjbVv4D0VAjRmpMSM1ZqTGjL4djcd9G_7nL3Z8bVf1m_U7V6Nw5CgoqlKg6Sc6xpzq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200539295</pqid></control><display><type>article</type><title>A Metaheuristic Approach for the Vertex Coloring Problem</title><source>Informs</source><source>EBSCOhost Business Source Complete</source><creator>Malaguti, Enrico ; Monaci, Michele ; Toth, Paolo</creator><creatorcontrib>Malaguti, Enrico ; Monaci, Michele ; Toth, Paolo</creatorcontrib><description>Given an undirected graph G = ( V, E ), the vertex coloring problem (VCP) requires to assign a color to each vertex in such a way that colors on adjacent vertices are different and the number of colors used is minimized. In this paper, we propose a metaheuristic approach for VCP that performs two phases: the first phase is based on an evolutionary algorithm, whereas the second one is a postoptimization phase based on the set covering formulation of the problem. Computational results on a set of DIMACS instances show that the overall algorithm is able to produce high-quality solutions in a reasonable amount of time. For four instances, the proposed algorithm is able to improve the best-known solution while for almost all the remaining instances, it finds the best-known solution in the literature.</description><identifier>ISSN: 1091-9856</identifier><identifier>EISSN: 1526-5528</identifier><identifier>EISSN: 1091-9856</identifier><identifier>DOI: 10.1287/ijoc.1070.0245</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Algorithms ; Analysis ; Cognitive learning ; evolutionary algorithm ; Genetic algorithms ; Graph coloring ; Graphs ; Heuristic ; Heuristic programming ; heuristics ; Optimization ; set covering ; Studies</subject><ispartof>INFORMS journal on computing, 2008-05, Vol.20 (2), p.302-316</ispartof><rights>COPYRIGHT 2008 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Spring 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-d27e2cb2664b7709dd6bd5d8e8a93071d09e4878e006018f283c4df90deb1c4d3</citedby><cites>FETCH-LOGICAL-c465t-d27e2cb2664b7709dd6bd5d8e8a93071d09e4878e006018f283c4df90deb1c4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/ijoc.1070.0245$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,3678,27903,27904,62592</link.rule.ids></links><search><creatorcontrib>Malaguti, Enrico</creatorcontrib><creatorcontrib>Monaci, Michele</creatorcontrib><creatorcontrib>Toth, Paolo</creatorcontrib><title>A Metaheuristic Approach for the Vertex Coloring Problem</title><title>INFORMS journal on computing</title><description>Given an undirected graph G = ( V, E ), the vertex coloring problem (VCP) requires to assign a color to each vertex in such a way that colors on adjacent vertices are different and the number of colors used is minimized. In this paper, we propose a metaheuristic approach for VCP that performs two phases: the first phase is based on an evolutionary algorithm, whereas the second one is a postoptimization phase based on the set covering formulation of the problem. Computational results on a set of DIMACS instances show that the overall algorithm is able to produce high-quality solutions in a reasonable amount of time. For four instances, the proposed algorithm is able to improve the best-known solution while for almost all the remaining instances, it finds the best-known solution in the literature.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Cognitive learning</subject><subject>evolutionary algorithm</subject><subject>Genetic algorithms</subject><subject>Graph coloring</subject><subject>Graphs</subject><subject>Heuristic</subject><subject>Heuristic programming</subject><subject>heuristics</subject><subject>Optimization</subject><subject>set covering</subject><subject>Studies</subject><issn>1091-9856</issn><issn>1526-5528</issn><issn>1091-9856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc1LxDAQxYsouK5ePRf12nWSNmlyXBa_YEUP6jW0yXSbpW3WpIv639uyggiizGGG4fdmHrwoOiUwI1Tkl3bt9IxADjOgGduLJoRRnjBGxf4wgySJFIwfRkchrAEgSzM5icQ8vse-qHHrbeitjuebjXeFruPK-bivMX5B3-N7vHCN87ZbxY_elQ22x9FBVTQBT776NHq-vnpa3CbLh5u7xXyZ6IyzPjE0R6pLynlW5jlIY3hpmBEoCplCTgxIzEQuEIADERUVqc5MJcFgSYYpnUZnu7uDrdcthl6t3dZ3w0tFAVgqqWQDdL6DVkWDynaV632hWxu0mhNBObCM8oFKfqFW2KEvGtdhZYf1D372Cz-UwdbqvwTauxA8VmrjbVv4D0VAjRmpMSM1ZqTGjL4djcd9G_7nL3Z8bVf1m_U7V6Nw5CgoqlKg6Sc6xpzq</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Malaguti, Enrico</creator><creator>Monaci, Michele</creator><creator>Toth, Paolo</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>200805</creationdate><title>A Metaheuristic Approach for the Vertex Coloring Problem</title><author>Malaguti, Enrico ; Monaci, Michele ; Toth, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-d27e2cb2664b7709dd6bd5d8e8a93071d09e4878e006018f283c4df90deb1c4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Cognitive learning</topic><topic>evolutionary algorithm</topic><topic>Genetic algorithms</topic><topic>Graph coloring</topic><topic>Graphs</topic><topic>Heuristic</topic><topic>Heuristic programming</topic><topic>heuristics</topic><topic>Optimization</topic><topic>set covering</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malaguti, Enrico</creatorcontrib><creatorcontrib>Monaci, Michele</creatorcontrib><creatorcontrib>Toth, Paolo</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>INFORMS journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malaguti, Enrico</au><au>Monaci, Michele</au><au>Toth, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Metaheuristic Approach for the Vertex Coloring Problem</atitle><jtitle>INFORMS journal on computing</jtitle><date>2008-05</date><risdate>2008</risdate><volume>20</volume><issue>2</issue><spage>302</spage><epage>316</epage><pages>302-316</pages><issn>1091-9856</issn><eissn>1526-5528</eissn><eissn>1091-9856</eissn><abstract>Given an undirected graph G = ( V, E ), the vertex coloring problem (VCP) requires to assign a color to each vertex in such a way that colors on adjacent vertices are different and the number of colors used is minimized. In this paper, we propose a metaheuristic approach for VCP that performs two phases: the first phase is based on an evolutionary algorithm, whereas the second one is a postoptimization phase based on the set covering formulation of the problem. Computational results on a set of DIMACS instances show that the overall algorithm is able to produce high-quality solutions in a reasonable amount of time. For four instances, the proposed algorithm is able to improve the best-known solution while for almost all the remaining instances, it finds the best-known solution in the literature.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/ijoc.1070.0245</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1091-9856 |
ispartof | INFORMS journal on computing, 2008-05, Vol.20 (2), p.302-316 |
issn | 1091-9856 1526-5528 1091-9856 |
language | eng |
recordid | cdi_gale_infotracgeneralonefile_A182605426 |
source | Informs; EBSCOhost Business Source Complete |
subjects | Algorithms Analysis Cognitive learning evolutionary algorithm Genetic algorithms Graph coloring Graphs Heuristic Heuristic programming heuristics Optimization set covering Studies |
title | A Metaheuristic Approach for the Vertex Coloring Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A22%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Metaheuristic%20Approach%20for%20the%20Vertex%20Coloring%20Problem&rft.jtitle=INFORMS%20journal%20on%20computing&rft.au=Malaguti,%20Enrico&rft.date=2008-05&rft.volume=20&rft.issue=2&rft.spage=302&rft.epage=316&rft.pages=302-316&rft.issn=1091-9856&rft.eissn=1526-5528&rft_id=info:doi/10.1287/ijoc.1070.0245&rft_dat=%3Cgale_proqu%3EA182605426%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200539295&rft_id=info:pmid/&rft_galeid=A182605426&rfr_iscdi=true |