Speeding Up Dynamic Shortest-Path Algorithms
Dynamic shortest-path algorithms update the shortest paths taking into account a change in an arc weight. This paper describes a new generic technique that allows the reduction of heap sizes used by several dynamic single-destination shortest-path algorithms. For unit weight changes, the updates can...
Gespeichert in:
Veröffentlicht in: | INFORMS journal on computing 2008-05, Vol.20 (2), p.191-204 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 204 |
---|---|
container_issue | 2 |
container_start_page | 191 |
container_title | INFORMS journal on computing |
container_volume | 20 |
creator | Buriol, Luciana S Resende, Mauricio G. C Thorup, Mikkel |
description | Dynamic shortest-path algorithms update the shortest paths taking into account a change in an arc weight. This paper describes a new generic technique that allows the reduction of heap sizes used by several dynamic single-destination shortest-path algorithms. For unit weight changes, the updates can be done without heaps. These reductions almost always reduce the computational times for these algorithms. In computational testing, several dynamic shortest-path algorithms with and without the heap-reduction technique are compared. Speedups of up to a factor of 1.8 were observed using the heap-reduction technique on random weight changes and of over a factor of five on unit weight changes. We compare as well with Dijkstra's algorithm, which recomputes the paths from scratch. With respect to Dijkstra's algorithm, speedups of up to five orders of magnitude are observed. |
doi_str_mv | 10.1287/ijoc.1070.0231 |
format | Article |
fullrecord | <record><control><sourceid>gale_highw</sourceid><recordid>TN_cdi_gale_infotracgeneralonefile_A182605417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A182605417</galeid><sourcerecordid>A182605417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-c84013e09faf9becf644ba8bfd57241eb8a62f1f3004252e8447e6c2581646693</originalsourceid><addsrcrecordid>eNqFkc9LwzAcxYsoOKdXz0U92pmkSZoex_wJA4W5c0izpM1om5p0yP57UyqIMJQcEr583vs-8qLoEoIZRCy7M1srZxBkYAZQCo-iCSSIJoQgdhzeIIdJzgg9jc683wIAcIrzSXS76pTamLaM1118v29FY2S8qqzrle-TN9FX8bwurTN91fjz6ESL2quL73sarR8f3hfPyfL16WUxXyaSpKRPJMMApgrkWui8UFJTjAvBCr0hGcJQFUxQpKFOQwhEkGIYZ4pKRBikmNI8nUZXo2_n7McuBOFbu3NtWMlR0GQY0DRA1yNUilpx02rbOyEb4yWfQ4YoIBhmgUoOUKVqlRO1bZU2YfyLnx3gw9mo8DN_CaSz3juleedMI9yeQ8CHXvjQCx964UMvP4kGc9f4__mbka9MWX0aN6YahAOHAEcc5jD9Akg3mBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200474063</pqid></control><display><type>article</type><title>Speeding Up Dynamic Shortest-Path Algorithms</title><source>Informs</source><source>EBSCOhost Business Source Complete</source><creator>Buriol, Luciana S ; Resende, Mauricio G. C ; Thorup, Mikkel</creator><creatorcontrib>Buriol, Luciana S ; Resende, Mauricio G. C ; Thorup, Mikkel</creatorcontrib><description>Dynamic shortest-path algorithms update the shortest paths taking into account a change in an arc weight. This paper describes a new generic technique that allows the reduction of heap sizes used by several dynamic single-destination shortest-path algorithms. For unit weight changes, the updates can be done without heaps. These reductions almost always reduce the computational times for these algorithms. In computational testing, several dynamic shortest-path algorithms with and without the heap-reduction technique are compared. Speedups of up to a factor of 1.8 were observed using the heap-reduction technique on random weight changes and of over a factor of five on unit weight changes. We compare as well with Dijkstra's algorithm, which recomputes the paths from scratch. With respect to Dijkstra's algorithm, speedups of up to five orders of magnitude are observed.</description><identifier>ISSN: 1091-9856</identifier><identifier>EISSN: 1526-5528</identifier><identifier>EISSN: 1091-9856</identifier><identifier>DOI: 10.1287/ijoc.1070.0231</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Algorithms ; Analysis ; Dijkstra's algorithm ; Dynamic programming ; dynamic shortest-path algorithms ; Graphs ; heaps ; Shortest path algorithms ; Studies ; trees ; Trees (Graph theory)</subject><ispartof>INFORMS journal on computing, 2008-05, Vol.20 (2), p.191-204</ispartof><rights>COPYRIGHT 2008 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Spring 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-c84013e09faf9becf644ba8bfd57241eb8a62f1f3004252e8447e6c2581646693</citedby><cites>FETCH-LOGICAL-c535t-c84013e09faf9becf644ba8bfd57241eb8a62f1f3004252e8447e6c2581646693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/ijoc.1070.0231$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>315,781,785,3693,27929,27930,62621</link.rule.ids></links><search><creatorcontrib>Buriol, Luciana S</creatorcontrib><creatorcontrib>Resende, Mauricio G. C</creatorcontrib><creatorcontrib>Thorup, Mikkel</creatorcontrib><title>Speeding Up Dynamic Shortest-Path Algorithms</title><title>INFORMS journal on computing</title><description>Dynamic shortest-path algorithms update the shortest paths taking into account a change in an arc weight. This paper describes a new generic technique that allows the reduction of heap sizes used by several dynamic single-destination shortest-path algorithms. For unit weight changes, the updates can be done without heaps. These reductions almost always reduce the computational times for these algorithms. In computational testing, several dynamic shortest-path algorithms with and without the heap-reduction technique are compared. Speedups of up to a factor of 1.8 were observed using the heap-reduction technique on random weight changes and of over a factor of five on unit weight changes. We compare as well with Dijkstra's algorithm, which recomputes the paths from scratch. With respect to Dijkstra's algorithm, speedups of up to five orders of magnitude are observed.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Dijkstra's algorithm</subject><subject>Dynamic programming</subject><subject>dynamic shortest-path algorithms</subject><subject>Graphs</subject><subject>heaps</subject><subject>Shortest path algorithms</subject><subject>Studies</subject><subject>trees</subject><subject>Trees (Graph theory)</subject><issn>1091-9856</issn><issn>1526-5528</issn><issn>1091-9856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc9LwzAcxYsoOKdXz0U92pmkSZoex_wJA4W5c0izpM1om5p0yP57UyqIMJQcEr583vs-8qLoEoIZRCy7M1srZxBkYAZQCo-iCSSIJoQgdhzeIIdJzgg9jc683wIAcIrzSXS76pTamLaM1118v29FY2S8qqzrle-TN9FX8bwurTN91fjz6ESL2quL73sarR8f3hfPyfL16WUxXyaSpKRPJMMApgrkWui8UFJTjAvBCr0hGcJQFUxQpKFOQwhEkGIYZ4pKRBikmNI8nUZXo2_n7McuBOFbu3NtWMlR0GQY0DRA1yNUilpx02rbOyEb4yWfQ4YoIBhmgUoOUKVqlRO1bZU2YfyLnx3gw9mo8DN_CaSz3juleedMI9yeQ8CHXvjQCx964UMvP4kGc9f4__mbka9MWX0aN6YahAOHAEcc5jD9Akg3mBY</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Buriol, Luciana S</creator><creator>Resende, Mauricio G. C</creator><creator>Thorup, Mikkel</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>200805</creationdate><title>Speeding Up Dynamic Shortest-Path Algorithms</title><author>Buriol, Luciana S ; Resende, Mauricio G. C ; Thorup, Mikkel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-c84013e09faf9becf644ba8bfd57241eb8a62f1f3004252e8447e6c2581646693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Dijkstra's algorithm</topic><topic>Dynamic programming</topic><topic>dynamic shortest-path algorithms</topic><topic>Graphs</topic><topic>heaps</topic><topic>Shortest path algorithms</topic><topic>Studies</topic><topic>trees</topic><topic>Trees (Graph theory)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buriol, Luciana S</creatorcontrib><creatorcontrib>Resende, Mauricio G. C</creatorcontrib><creatorcontrib>Thorup, Mikkel</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>INFORMS journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buriol, Luciana S</au><au>Resende, Mauricio G. C</au><au>Thorup, Mikkel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speeding Up Dynamic Shortest-Path Algorithms</atitle><jtitle>INFORMS journal on computing</jtitle><date>2008-05</date><risdate>2008</risdate><volume>20</volume><issue>2</issue><spage>191</spage><epage>204</epage><pages>191-204</pages><issn>1091-9856</issn><eissn>1526-5528</eissn><eissn>1091-9856</eissn><abstract>Dynamic shortest-path algorithms update the shortest paths taking into account a change in an arc weight. This paper describes a new generic technique that allows the reduction of heap sizes used by several dynamic single-destination shortest-path algorithms. For unit weight changes, the updates can be done without heaps. These reductions almost always reduce the computational times for these algorithms. In computational testing, several dynamic shortest-path algorithms with and without the heap-reduction technique are compared. Speedups of up to a factor of 1.8 were observed using the heap-reduction technique on random weight changes and of over a factor of five on unit weight changes. We compare as well with Dijkstra's algorithm, which recomputes the paths from scratch. With respect to Dijkstra's algorithm, speedups of up to five orders of magnitude are observed.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/ijoc.1070.0231</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1091-9856 |
ispartof | INFORMS journal on computing, 2008-05, Vol.20 (2), p.191-204 |
issn | 1091-9856 1526-5528 1091-9856 |
language | eng |
recordid | cdi_gale_infotracgeneralonefile_A182605417 |
source | Informs; EBSCOhost Business Source Complete |
subjects | Algorithms Analysis Dijkstra's algorithm Dynamic programming dynamic shortest-path algorithms Graphs heaps Shortest path algorithms Studies trees Trees (Graph theory) |
title | Speeding Up Dynamic Shortest-Path Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T10%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speeding%20Up%20Dynamic%20Shortest-Path%20Algorithms&rft.jtitle=INFORMS%20journal%20on%20computing&rft.au=Buriol,%20Luciana%20S&rft.date=2008-05&rft.volume=20&rft.issue=2&rft.spage=191&rft.epage=204&rft.pages=191-204&rft.issn=1091-9856&rft.eissn=1526-5528&rft_id=info:doi/10.1287/ijoc.1070.0231&rft_dat=%3Cgale_highw%3EA182605417%3C/gale_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200474063&rft_id=info:pmid/&rft_galeid=A182605417&rfr_iscdi=true |