Speeding Up Dynamic Shortest-Path Algorithms

Dynamic shortest-path algorithms update the shortest paths taking into account a change in an arc weight. This paper describes a new generic technique that allows the reduction of heap sizes used by several dynamic single-destination shortest-path algorithms. For unit weight changes, the updates can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:INFORMS journal on computing 2008-05, Vol.20 (2), p.191-204
Hauptverfasser: Buriol, Luciana S, Resende, Mauricio G. C, Thorup, Mikkel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 204
container_issue 2
container_start_page 191
container_title INFORMS journal on computing
container_volume 20
creator Buriol, Luciana S
Resende, Mauricio G. C
Thorup, Mikkel
description Dynamic shortest-path algorithms update the shortest paths taking into account a change in an arc weight. This paper describes a new generic technique that allows the reduction of heap sizes used by several dynamic single-destination shortest-path algorithms. For unit weight changes, the updates can be done without heaps. These reductions almost always reduce the computational times for these algorithms. In computational testing, several dynamic shortest-path algorithms with and without the heap-reduction technique are compared. Speedups of up to a factor of 1.8 were observed using the heap-reduction technique on random weight changes and of over a factor of five on unit weight changes. We compare as well with Dijkstra's algorithm, which recomputes the paths from scratch. With respect to Dijkstra's algorithm, speedups of up to five orders of magnitude are observed.
doi_str_mv 10.1287/ijoc.1070.0231
format Article
fullrecord <record><control><sourceid>gale_highw</sourceid><recordid>TN_cdi_gale_infotracgeneralonefile_A182605417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A182605417</galeid><sourcerecordid>A182605417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-c84013e09faf9becf644ba8bfd57241eb8a62f1f3004252e8447e6c2581646693</originalsourceid><addsrcrecordid>eNqFkc9LwzAcxYsoOKdXz0U92pmkSZoex_wJA4W5c0izpM1om5p0yP57UyqIMJQcEr583vs-8qLoEoIZRCy7M1srZxBkYAZQCo-iCSSIJoQgdhzeIIdJzgg9jc683wIAcIrzSXS76pTamLaM1118v29FY2S8qqzrle-TN9FX8bwurTN91fjz6ESL2quL73sarR8f3hfPyfL16WUxXyaSpKRPJMMApgrkWui8UFJTjAvBCr0hGcJQFUxQpKFOQwhEkGIYZ4pKRBikmNI8nUZXo2_n7McuBOFbu3NtWMlR0GQY0DRA1yNUilpx02rbOyEb4yWfQ4YoIBhmgUoOUKVqlRO1bZU2YfyLnx3gw9mo8DN_CaSz3juleedMI9yeQ8CHXvjQCx964UMvP4kGc9f4__mbka9MWX0aN6YahAOHAEcc5jD9Akg3mBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200474063</pqid></control><display><type>article</type><title>Speeding Up Dynamic Shortest-Path Algorithms</title><source>Informs</source><source>EBSCOhost Business Source Complete</source><creator>Buriol, Luciana S ; Resende, Mauricio G. C ; Thorup, Mikkel</creator><creatorcontrib>Buriol, Luciana S ; Resende, Mauricio G. C ; Thorup, Mikkel</creatorcontrib><description>Dynamic shortest-path algorithms update the shortest paths taking into account a change in an arc weight. This paper describes a new generic technique that allows the reduction of heap sizes used by several dynamic single-destination shortest-path algorithms. For unit weight changes, the updates can be done without heaps. These reductions almost always reduce the computational times for these algorithms. In computational testing, several dynamic shortest-path algorithms with and without the heap-reduction technique are compared. Speedups of up to a factor of 1.8 were observed using the heap-reduction technique on random weight changes and of over a factor of five on unit weight changes. We compare as well with Dijkstra's algorithm, which recomputes the paths from scratch. With respect to Dijkstra's algorithm, speedups of up to five orders of magnitude are observed.</description><identifier>ISSN: 1091-9856</identifier><identifier>EISSN: 1526-5528</identifier><identifier>EISSN: 1091-9856</identifier><identifier>DOI: 10.1287/ijoc.1070.0231</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Algorithms ; Analysis ; Dijkstra's algorithm ; Dynamic programming ; dynamic shortest-path algorithms ; Graphs ; heaps ; Shortest path algorithms ; Studies ; trees ; Trees (Graph theory)</subject><ispartof>INFORMS journal on computing, 2008-05, Vol.20 (2), p.191-204</ispartof><rights>COPYRIGHT 2008 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Spring 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-c84013e09faf9becf644ba8bfd57241eb8a62f1f3004252e8447e6c2581646693</citedby><cites>FETCH-LOGICAL-c535t-c84013e09faf9becf644ba8bfd57241eb8a62f1f3004252e8447e6c2581646693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/ijoc.1070.0231$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>315,781,785,3693,27929,27930,62621</link.rule.ids></links><search><creatorcontrib>Buriol, Luciana S</creatorcontrib><creatorcontrib>Resende, Mauricio G. C</creatorcontrib><creatorcontrib>Thorup, Mikkel</creatorcontrib><title>Speeding Up Dynamic Shortest-Path Algorithms</title><title>INFORMS journal on computing</title><description>Dynamic shortest-path algorithms update the shortest paths taking into account a change in an arc weight. This paper describes a new generic technique that allows the reduction of heap sizes used by several dynamic single-destination shortest-path algorithms. For unit weight changes, the updates can be done without heaps. These reductions almost always reduce the computational times for these algorithms. In computational testing, several dynamic shortest-path algorithms with and without the heap-reduction technique are compared. Speedups of up to a factor of 1.8 were observed using the heap-reduction technique on random weight changes and of over a factor of five on unit weight changes. We compare as well with Dijkstra's algorithm, which recomputes the paths from scratch. With respect to Dijkstra's algorithm, speedups of up to five orders of magnitude are observed.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Dijkstra's algorithm</subject><subject>Dynamic programming</subject><subject>dynamic shortest-path algorithms</subject><subject>Graphs</subject><subject>heaps</subject><subject>Shortest path algorithms</subject><subject>Studies</subject><subject>trees</subject><subject>Trees (Graph theory)</subject><issn>1091-9856</issn><issn>1526-5528</issn><issn>1091-9856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc9LwzAcxYsoOKdXz0U92pmkSZoex_wJA4W5c0izpM1om5p0yP57UyqIMJQcEr583vs-8qLoEoIZRCy7M1srZxBkYAZQCo-iCSSIJoQgdhzeIIdJzgg9jc683wIAcIrzSXS76pTamLaM1118v29FY2S8qqzrle-TN9FX8bwurTN91fjz6ESL2quL73sarR8f3hfPyfL16WUxXyaSpKRPJMMApgrkWui8UFJTjAvBCr0hGcJQFUxQpKFOQwhEkGIYZ4pKRBikmNI8nUZXo2_n7McuBOFbu3NtWMlR0GQY0DRA1yNUilpx02rbOyEb4yWfQ4YoIBhmgUoOUKVqlRO1bZU2YfyLnx3gw9mo8DN_CaSz3juleedMI9yeQ8CHXvjQCx964UMvP4kGc9f4__mbka9MWX0aN6YahAOHAEcc5jD9Akg3mBY</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Buriol, Luciana S</creator><creator>Resende, Mauricio G. C</creator><creator>Thorup, Mikkel</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>200805</creationdate><title>Speeding Up Dynamic Shortest-Path Algorithms</title><author>Buriol, Luciana S ; Resende, Mauricio G. C ; Thorup, Mikkel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-c84013e09faf9becf644ba8bfd57241eb8a62f1f3004252e8447e6c2581646693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Dijkstra's algorithm</topic><topic>Dynamic programming</topic><topic>dynamic shortest-path algorithms</topic><topic>Graphs</topic><topic>heaps</topic><topic>Shortest path algorithms</topic><topic>Studies</topic><topic>trees</topic><topic>Trees (Graph theory)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buriol, Luciana S</creatorcontrib><creatorcontrib>Resende, Mauricio G. C</creatorcontrib><creatorcontrib>Thorup, Mikkel</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>INFORMS journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buriol, Luciana S</au><au>Resende, Mauricio G. C</au><au>Thorup, Mikkel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speeding Up Dynamic Shortest-Path Algorithms</atitle><jtitle>INFORMS journal on computing</jtitle><date>2008-05</date><risdate>2008</risdate><volume>20</volume><issue>2</issue><spage>191</spage><epage>204</epage><pages>191-204</pages><issn>1091-9856</issn><eissn>1526-5528</eissn><eissn>1091-9856</eissn><abstract>Dynamic shortest-path algorithms update the shortest paths taking into account a change in an arc weight. This paper describes a new generic technique that allows the reduction of heap sizes used by several dynamic single-destination shortest-path algorithms. For unit weight changes, the updates can be done without heaps. These reductions almost always reduce the computational times for these algorithms. In computational testing, several dynamic shortest-path algorithms with and without the heap-reduction technique are compared. Speedups of up to a factor of 1.8 were observed using the heap-reduction technique on random weight changes and of over a factor of five on unit weight changes. We compare as well with Dijkstra's algorithm, which recomputes the paths from scratch. With respect to Dijkstra's algorithm, speedups of up to five orders of magnitude are observed.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/ijoc.1070.0231</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1091-9856
ispartof INFORMS journal on computing, 2008-05, Vol.20 (2), p.191-204
issn 1091-9856
1526-5528
1091-9856
language eng
recordid cdi_gale_infotracgeneralonefile_A182605417
source Informs; EBSCOhost Business Source Complete
subjects Algorithms
Analysis
Dijkstra's algorithm
Dynamic programming
dynamic shortest-path algorithms
Graphs
heaps
Shortest path algorithms
Studies
trees
Trees (Graph theory)
title Speeding Up Dynamic Shortest-Path Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T10%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speeding%20Up%20Dynamic%20Shortest-Path%20Algorithms&rft.jtitle=INFORMS%20journal%20on%20computing&rft.au=Buriol,%20Luciana%20S&rft.date=2008-05&rft.volume=20&rft.issue=2&rft.spage=191&rft.epage=204&rft.pages=191-204&rft.issn=1091-9856&rft.eissn=1526-5528&rft_id=info:doi/10.1287/ijoc.1070.0231&rft_dat=%3Cgale_highw%3EA182605417%3C/gale_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200474063&rft_id=info:pmid/&rft_galeid=A182605417&rfr_iscdi=true