A particulate-scale investigation of cemented sand behavior
In this paper, triaxial tests and numerical simulations using the discrete element method (DEM) are combined to explore the underlying mechanisms of the unique behavior of artificially cemented sands. The experimental results show that strength enhancement, volumetric dilation, and the shear banding...
Gespeichert in:
Veröffentlicht in: | Canadian geotechnical journal 2008-01, Vol.45 (1), p.29-44 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44 |
---|---|
container_issue | 1 |
container_start_page | 29 |
container_title | Canadian geotechnical journal |
container_volume | 45 |
creator | Wang, Y.-H Leung, S.-C |
description | In this paper, triaxial tests and numerical simulations using the discrete element method (DEM) are combined to explore the underlying mechanisms of the unique behavior of artificially cemented sands. The experimental results show that strength enhancement, volumetric dilation, and the shear banding associated failure mode are observed in Portland cement sand;; these features become more pronounced with increasing cement content. Different responses are found in gypsum-cemented sand even though both types of cemented sand specimens were prepared under very similar void ratios before shearing. The DEM simulations on the Portland cement sand were carried out under two particular arrangements (i.e., the use of small cementing particles and flexible membrane boundaries). The simulation results reveal that particles in the bonding network jointly share the loading and many micro force-chains associated with cementation are created. Compared with uncemented sand, a more stable and stronger force-chain complex subjected to smaller force concentration is formed in cemented sand, which gives rise to higher strength. Intensive bond breakage, concentrated relative particle movement, column-like force chains, great particle rotation, and high local porosity are found inside the shear band. The bonded clusters remain at large strains to help stabilize the particle arch and therefore to maintain the volumetric dilation. |
doi_str_mv | 10.1139/T07-070 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracgeneralonefile_A180518607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A180518607</galeid><sourcerecordid>A180518607</sourcerecordid><originalsourceid>FETCH-LOGICAL-a640t-8af89cc7c06f96549be24f9d27564599372432fb9ed4447d1534974045ba93253</originalsourceid><addsrcrecordid>eNqV0l9rFDEQAPAgCp5V_AqLoKKwdfJnNxv6dBRbC6UFrc8hl51cU_ay2yRb9NubcqX1Sn2QPCSEXyYzyRDylsI-pVx9uQBZg4RnZEEZdHULFJ6TBUBZ81aKl-RVSlcAVAjGFuRgWU0mZm_nwWSskzUDVj7cYMp-bbIfQzW6yuIGQ8a-Sib01QovzY0f42vywpkh4Zu7eY_8PPp6cfitPj0_PjlcntamFZDrzrhOWSsttE61jVArZMKpnsmmFY1SXDLBmVsp7IUQsqcNF0oKEM3KKM4avkc-bONOcbyeS2Z645PFYTABxzlpTgW0pc4C3z2CV-McQ8lNM8pFwzroCqq3aF1K1T64MUdj1xgwmmEM6HzZXtIOGtq1IB-C7ng7-Wv9N9p_ApXR48bbJ6N-2jlQTMZfeW3mlPTJj-__Yc927cettXFMKaLTU_QbE39rCvq2P3TpD136o8j3d49lbn_dRROsT_ecAVOUNvTh9UO0EROaaC_vVd4G01PvCvz8b_j49j85vc5e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213452808</pqid></control><display><type>article</type><title>A particulate-scale investigation of cemented sand behavior</title><source>NRC Research Press</source><source>Alma/SFX Local Collection</source><creator>Wang, Y.-H ; Leung, S.-C</creator><creatorcontrib>Wang, Y.-H ; Leung, S.-C</creatorcontrib><description>In this paper, triaxial tests and numerical simulations using the discrete element method (DEM) are combined to explore the underlying mechanisms of the unique behavior of artificially cemented sands. The experimental results show that strength enhancement, volumetric dilation, and the shear banding associated failure mode are observed in Portland cement sand;; these features become more pronounced with increasing cement content. Different responses are found in gypsum-cemented sand even though both types of cemented sand specimens were prepared under very similar void ratios before shearing. The DEM simulations on the Portland cement sand were carried out under two particular arrangements (i.e., the use of small cementing particles and flexible membrane boundaries). The simulation results reveal that particles in the bonding network jointly share the loading and many micro force-chains associated with cementation are created. Compared with uncemented sand, a more stable and stronger force-chain complex subjected to smaller force concentration is formed in cemented sand, which gives rise to higher strength. Intensive bond breakage, concentrated relative particle movement, column-like force chains, great particle rotation, and high local porosity are found inside the shear band. The bonded clusters remain at large strains to help stabilize the particle arch and therefore to maintain the volumetric dilation.</description><identifier>ISSN: 0008-3674</identifier><identifier>EISSN: 1208-6010</identifier><identifier>DOI: 10.1139/T07-070</identifier><identifier>CODEN: CGJOAH</identifier><language>eng</language><publisher>Ottawa, ON: National Research Council of Canada</publisher><subject>agrégat lié ; bandes de cisaillement ; bonded cluster ; Cement ; dilatation volumétrique ; discrete element method ; distribution de chaînettes de forces ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Engineering geology ; Exact sciences and technology ; Finite element analysis ; force-chain distribution ; Geotechnology ; Gypsum ; Mechanical properties ; méthode d'éléments discrets ; Porosity ; Portland cement ; Sand ; Sand & gravel ; shear banding ; Shear loading ; Simulation ; volumetric dilation</subject><ispartof>Canadian geotechnical journal, 2008-01, Vol.45 (1), p.29-44</ispartof><rights>2008 INIST-CNRS</rights><rights>COPYRIGHT 2008 NRC Research Press</rights><rights>Copyright National Research Council of Canada Jan 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a640t-8af89cc7c06f96549be24f9d27564599372432fb9ed4447d1534974045ba93253</citedby><cites>FETCH-LOGICAL-a640t-8af89cc7c06f96549be24f9d27564599372432fb9ed4447d1534974045ba93253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://cdnsciencepub.com/doi/pdf/10.1139/T07-070$$EPDF$$P50$$Gnrcresearch$$H</linktopdf><linktohtml>$$Uhttps://cdnsciencepub.com/doi/full/10.1139/T07-070$$EHTML$$P50$$Gnrcresearch$$H</linktohtml><link.rule.ids>314,778,782,2921,4012,27906,27907,27908,64409,64987</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20291151$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Y.-H</creatorcontrib><creatorcontrib>Leung, S.-C</creatorcontrib><title>A particulate-scale investigation of cemented sand behavior</title><title>Canadian geotechnical journal</title><addtitle>Revue canadienne de géotechnique</addtitle><description>In this paper, triaxial tests and numerical simulations using the discrete element method (DEM) are combined to explore the underlying mechanisms of the unique behavior of artificially cemented sands. The experimental results show that strength enhancement, volumetric dilation, and the shear banding associated failure mode are observed in Portland cement sand;; these features become more pronounced with increasing cement content. Different responses are found in gypsum-cemented sand even though both types of cemented sand specimens were prepared under very similar void ratios before shearing. The DEM simulations on the Portland cement sand were carried out under two particular arrangements (i.e., the use of small cementing particles and flexible membrane boundaries). The simulation results reveal that particles in the bonding network jointly share the loading and many micro force-chains associated with cementation are created. Compared with uncemented sand, a more stable and stronger force-chain complex subjected to smaller force concentration is formed in cemented sand, which gives rise to higher strength. Intensive bond breakage, concentrated relative particle movement, column-like force chains, great particle rotation, and high local porosity are found inside the shear band. The bonded clusters remain at large strains to help stabilize the particle arch and therefore to maintain the volumetric dilation.</description><subject>agrégat lié</subject><subject>bandes de cisaillement</subject><subject>bonded cluster</subject><subject>Cement</subject><subject>dilatation volumétrique</subject><subject>discrete element method</subject><subject>distribution de chaînettes de forces</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>force-chain distribution</subject><subject>Geotechnology</subject><subject>Gypsum</subject><subject>Mechanical properties</subject><subject>méthode d'éléments discrets</subject><subject>Porosity</subject><subject>Portland cement</subject><subject>Sand</subject><subject>Sand & gravel</subject><subject>shear banding</subject><subject>Shear loading</subject><subject>Simulation</subject><subject>volumetric dilation</subject><issn>0008-3674</issn><issn>1208-6010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqV0l9rFDEQAPAgCp5V_AqLoKKwdfJnNxv6dBRbC6UFrc8hl51cU_ay2yRb9NubcqX1Sn2QPCSEXyYzyRDylsI-pVx9uQBZg4RnZEEZdHULFJ6TBUBZ81aKl-RVSlcAVAjGFuRgWU0mZm_nwWSskzUDVj7cYMp-bbIfQzW6yuIGQ8a-Sib01QovzY0f42vywpkh4Zu7eY_8PPp6cfitPj0_PjlcntamFZDrzrhOWSsttE61jVArZMKpnsmmFY1SXDLBmVsp7IUQsqcNF0oKEM3KKM4avkc-bONOcbyeS2Z645PFYTABxzlpTgW0pc4C3z2CV-McQ8lNM8pFwzroCqq3aF1K1T64MUdj1xgwmmEM6HzZXtIOGtq1IB-C7ng7-Wv9N9p_ApXR48bbJ6N-2jlQTMZfeW3mlPTJj-__Yc927cettXFMKaLTU_QbE39rCvq2P3TpD136o8j3d49lbn_dRROsT_ecAVOUNvTh9UO0EROaaC_vVd4G01PvCvz8b_j49j85vc5e</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Wang, Y.-H</creator><creator>Leung, S.-C</creator><general>National Research Council of Canada</general><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>200801</creationdate><title>A particulate-scale investigation of cemented sand behavior</title><author>Wang, Y.-H ; Leung, S.-C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a640t-8af89cc7c06f96549be24f9d27564599372432fb9ed4447d1534974045ba93253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>agrégat lié</topic><topic>bandes de cisaillement</topic><topic>bonded cluster</topic><topic>Cement</topic><topic>dilatation volumétrique</topic><topic>discrete element method</topic><topic>distribution de chaînettes de forces</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>force-chain distribution</topic><topic>Geotechnology</topic><topic>Gypsum</topic><topic>Mechanical properties</topic><topic>méthode d'éléments discrets</topic><topic>Porosity</topic><topic>Portland cement</topic><topic>Sand</topic><topic>Sand & gravel</topic><topic>shear banding</topic><topic>Shear loading</topic><topic>Simulation</topic><topic>volumetric dilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Y.-H</creatorcontrib><creatorcontrib>Leung, S.-C</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Canadian geotechnical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Y.-H</au><au>Leung, S.-C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A particulate-scale investigation of cemented sand behavior</atitle><jtitle>Canadian geotechnical journal</jtitle><addtitle>Revue canadienne de géotechnique</addtitle><date>2008-01</date><risdate>2008</risdate><volume>45</volume><issue>1</issue><spage>29</spage><epage>44</epage><pages>29-44</pages><issn>0008-3674</issn><eissn>1208-6010</eissn><coden>CGJOAH</coden><abstract>In this paper, triaxial tests and numerical simulations using the discrete element method (DEM) are combined to explore the underlying mechanisms of the unique behavior of artificially cemented sands. The experimental results show that strength enhancement, volumetric dilation, and the shear banding associated failure mode are observed in Portland cement sand;; these features become more pronounced with increasing cement content. Different responses are found in gypsum-cemented sand even though both types of cemented sand specimens were prepared under very similar void ratios before shearing. The DEM simulations on the Portland cement sand were carried out under two particular arrangements (i.e., the use of small cementing particles and flexible membrane boundaries). The simulation results reveal that particles in the bonding network jointly share the loading and many micro force-chains associated with cementation are created. Compared with uncemented sand, a more stable and stronger force-chain complex subjected to smaller force concentration is formed in cemented sand, which gives rise to higher strength. Intensive bond breakage, concentrated relative particle movement, column-like force chains, great particle rotation, and high local porosity are found inside the shear band. The bonded clusters remain at large strains to help stabilize the particle arch and therefore to maintain the volumetric dilation.</abstract><cop>Ottawa, ON</cop><pub>National Research Council of Canada</pub><doi>10.1139/T07-070</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-3674 |
ispartof | Canadian geotechnical journal, 2008-01, Vol.45 (1), p.29-44 |
issn | 0008-3674 1208-6010 |
language | eng |
recordid | cdi_gale_infotracgeneralonefile_A180518607 |
source | NRC Research Press; Alma/SFX Local Collection |
subjects | agrégat lié bandes de cisaillement bonded cluster Cement dilatation volumétrique discrete element method distribution de chaînettes de forces Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Engineering geology Exact sciences and technology Finite element analysis force-chain distribution Geotechnology Gypsum Mechanical properties méthode d'éléments discrets Porosity Portland cement Sand Sand & gravel shear banding Shear loading Simulation volumetric dilation |
title | A particulate-scale investigation of cemented sand behavior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A53%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20particulate-scale%20investigation%20of%20cemented%20sand%20behavior&rft.jtitle=Canadian%20geotechnical%20journal&rft.au=Wang,%20Y.-H&rft.date=2008-01&rft.volume=45&rft.issue=1&rft.spage=29&rft.epage=44&rft.pages=29-44&rft.issn=0008-3674&rft.eissn=1208-6010&rft.coden=CGJOAH&rft_id=info:doi/10.1139/T07-070&rft_dat=%3Cgale_cross%3EA180518607%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213452808&rft_id=info:pmid/&rft_galeid=A180518607&rfr_iscdi=true |