Effect of a vacuum gradient on the consolidation of dredged slurry by vacuum preloading
In this paper, a large-scale indoor model test was carried out to reinforce dredged slurry by vacuum preloading, and the effect of the vacuum gradient on the reinforcement effect was studied. The vacuum pressure, volume of extracted water, average ground settlement, and excess pore-water pressure we...
Gespeichert in:
Veröffentlicht in: | Canadian geotechnical journal 2021-07, Vol.58 (7), p.1036-1044 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1044 |
---|---|
container_issue | 7 |
container_start_page | 1036 |
container_title | Canadian geotechnical journal |
container_volume | 58 |
creator | Wang, Jun Cai, Yuanqiang Liu, Fei Y Li, Zhe Yuan, Guo H Du, Yun G Hu, Xiu Q |
description | In this paper, a large-scale indoor model test was carried out to reinforce dredged slurry by vacuum preloading, and the effect of the vacuum gradient on the reinforcement effect was studied. The vacuum pressure, volume of extracted water, average ground settlement, and excess pore-water pressure were monitored during the test. After the test, the water content and vane shear strength were measured, and a particle analysis test and a scanning electron microscopy test were carried out. The results indicated that a small vacuum gradient could improve the consolidation degree and strength of the soil, and the smaller the vacuum gradient, the better the reinforcement of the soil. In addition, reducing the vacuum gradient could decrease the differential settlement of the soil surface and alleviate the migration of fine particles to the prefabricated drainage plates; therefore, the small vacuum gradient improved the clogging of the prefabricated drainage plates and the uniformity of soil consolidation. However, reducing the vacuum gradient also extended the test period. A vacuum gradient of 20 kPa obtained the fastest consolidation rate of the soil. |
doi_str_mv | 10.1139/cgj-2019-0666 |
format | Article |
fullrecord | <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_gale_infotraccpiq_668522554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A668522554</galeid><sourcerecordid>A668522554</sourcerecordid><originalsourceid>FETCH-LOGICAL-a634t-33333141d0d5216f4f1c11b90ef7ef3fa11c1d992ac0177ac95c1aa11223b0983</originalsourceid><addsrcrecordid>eNqVks2LFDEQxRtRcFw9em_0JNJrKt2d7hyXYV0XFgU_8Bgy6Upvhp5kNknrzn9vjePXwoCaHFJ5_F5VAq8ongI7BajlKzOuK85AVkwIca9YAGd9JRiw-8WCMapr0TUPi0cprRmDpuF8UXw-txZNLoMtdflFm3nelGPUg0NPoi_zNZYm-BQmN-jsSCFyiDiMOJRpmmPclavdT-c24hTI7MfHxQOrp4RPfpwnxafX5x-Xb6qrdxeXy7OrSou6yVW9X9DAwIaWg7CNBQOwkgxth7a2Gug-SMm1YdB12sjWgCaV83rFZF-fFM8Pfbcx3MyYslqHOXoaqXjb9BK6pue_qVFPqJy3IUdtNi4ZdSZE33Letg1R1RFqRI9RT8GjdSTf4Z8d4c3W3ag_odMjEO0BN84c7frijoGYjLd51HNK6vLD-_9g3x79nYkhpYhWbaPb6LhTwNQ-P4ryo_b5Ufv8EN8f-K-4CjYZSoTBXx7Kk-igl21HFZNLl7-nYxlmn8n68t-tRLMD7aOJmFBHc_2Xt30Dwh3jhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548917482</pqid></control><display><type>article</type><title>Effect of a vacuum gradient on the consolidation of dredged slurry by vacuum preloading</title><source>NRC Research Press</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Wang, Jun ; Cai, Yuanqiang ; Liu, Fei Y ; Li, Zhe ; Yuan, Guo H ; Du, Yun G ; Hu, Xiu Q</creator><creatorcontrib>Wang, Jun ; Cai, Yuanqiang ; Liu, Fei Y ; Li, Zhe ; Yuan, Guo H ; Du, Yun G ; Hu, Xiu Q</creatorcontrib><description>In this paper, a large-scale indoor model test was carried out to reinforce dredged slurry by vacuum preloading, and the effect of the vacuum gradient on the reinforcement effect was studied. The vacuum pressure, volume of extracted water, average ground settlement, and excess pore-water pressure were monitored during the test. After the test, the water content and vane shear strength were measured, and a particle analysis test and a scanning electron microscopy test were carried out. The results indicated that a small vacuum gradient could improve the consolidation degree and strength of the soil, and the smaller the vacuum gradient, the better the reinforcement of the soil. In addition, reducing the vacuum gradient could decrease the differential settlement of the soil surface and alleviate the migration of fine particles to the prefabricated drainage plates; therefore, the small vacuum gradient improved the clogging of the prefabricated drainage plates and the uniformity of soil consolidation. However, reducing the vacuum gradient also extended the test period. A vacuum gradient of 20 kPa obtained the fastest consolidation rate of the soil.</description><identifier>ISSN: 0008-3674</identifier><identifier>EISSN: 1208-6010</identifier><identifier>DOI: 10.1139/cgj-2019-0666</identifier><language>eng</language><publisher>1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7: NRC Research Press</publisher><subject>Analysis ; Consolidation ; consolidation rate ; Differential settlement ; Drainage ; Dredging ; effet de renforcement ; Electron microscopy ; Engineering ; Engineering, Geological ; Environmental aspects ; Fines ; Geology ; Geosciences, Multidisciplinary ; gradient de vide ; Hydrostatic pressure ; Mechanical properties ; Model testing ; Moisture content ; Particle analysis ; Physical Sciences ; Plaques ; Plates ; Pore water ; Pore water pressure ; Prefabrication ; précharge de vide étagée ; Reclamation of land ; reinforcement effect ; Scanning electron microscopy ; Science & Technology ; Shear strength ; Slurries ; Slurry ; Soil ; Soil mechanics ; Soil settlement ; Soil strength ; Soil surfaces ; Soils ; stepped vacuum preloading ; taux de consolidation ; Technology ; Vacuum ; vacuum gradient ; Water content ; Water pressure</subject><ispartof>Canadian geotechnical journal, 2021-07, Vol.58 (7), p.1036-1044</ispartof><rights>COPYRIGHT 2021 NRC Research Press</rights><rights>2021 Published by NRC Research Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>16</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000671895700009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a634t-33333141d0d5216f4f1c11b90ef7ef3fa11c1d992ac0177ac95c1aa11223b0983</citedby><cites>FETCH-LOGICAL-a634t-33333141d0d5216f4f1c11b90ef7ef3fa11c1d992ac0177ac95c1aa11223b0983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://cdnsciencepub.com/doi/pdf/10.1139/cgj-2019-0666$$EPDF$$P50$$Gnrcresearch$$H</linktopdf><linktohtml>$$Uhttps://cdnsciencepub.com/doi/full/10.1139/cgj-2019-0666$$EHTML$$P50$$Gnrcresearch$$H</linktohtml><link.rule.ids>315,781,785,2933,27929,27930,39263,64433,65239</link.rule.ids></links><search><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Cai, Yuanqiang</creatorcontrib><creatorcontrib>Liu, Fei Y</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Yuan, Guo H</creatorcontrib><creatorcontrib>Du, Yun G</creatorcontrib><creatorcontrib>Hu, Xiu Q</creatorcontrib><title>Effect of a vacuum gradient on the consolidation of dredged slurry by vacuum preloading</title><title>Canadian geotechnical journal</title><addtitle>CAN GEOTECH J</addtitle><description>In this paper, a large-scale indoor model test was carried out to reinforce dredged slurry by vacuum preloading, and the effect of the vacuum gradient on the reinforcement effect was studied. The vacuum pressure, volume of extracted water, average ground settlement, and excess pore-water pressure were monitored during the test. After the test, the water content and vane shear strength were measured, and a particle analysis test and a scanning electron microscopy test were carried out. The results indicated that a small vacuum gradient could improve the consolidation degree and strength of the soil, and the smaller the vacuum gradient, the better the reinforcement of the soil. In addition, reducing the vacuum gradient could decrease the differential settlement of the soil surface and alleviate the migration of fine particles to the prefabricated drainage plates; therefore, the small vacuum gradient improved the clogging of the prefabricated drainage plates and the uniformity of soil consolidation. However, reducing the vacuum gradient also extended the test period. A vacuum gradient of 20 kPa obtained the fastest consolidation rate of the soil.</description><subject>Analysis</subject><subject>Consolidation</subject><subject>consolidation rate</subject><subject>Differential settlement</subject><subject>Drainage</subject><subject>Dredging</subject><subject>effet de renforcement</subject><subject>Electron microscopy</subject><subject>Engineering</subject><subject>Engineering, Geological</subject><subject>Environmental aspects</subject><subject>Fines</subject><subject>Geology</subject><subject>Geosciences, Multidisciplinary</subject><subject>gradient de vide</subject><subject>Hydrostatic pressure</subject><subject>Mechanical properties</subject><subject>Model testing</subject><subject>Moisture content</subject><subject>Particle analysis</subject><subject>Physical Sciences</subject><subject>Plaques</subject><subject>Plates</subject><subject>Pore water</subject><subject>Pore water pressure</subject><subject>Prefabrication</subject><subject>précharge de vide étagée</subject><subject>Reclamation of land</subject><subject>reinforcement effect</subject><subject>Scanning electron microscopy</subject><subject>Science & Technology</subject><subject>Shear strength</subject><subject>Slurries</subject><subject>Slurry</subject><subject>Soil</subject><subject>Soil mechanics</subject><subject>Soil settlement</subject><subject>Soil strength</subject><subject>Soil surfaces</subject><subject>Soils</subject><subject>stepped vacuum preloading</subject><subject>taux de consolidation</subject><subject>Technology</subject><subject>Vacuum</subject><subject>vacuum gradient</subject><subject>Water content</subject><subject>Water pressure</subject><issn>0008-3674</issn><issn>1208-6010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqVks2LFDEQxRtRcFw9em_0JNJrKt2d7hyXYV0XFgU_8Bgy6Upvhp5kNknrzn9vjePXwoCaHFJ5_F5VAq8ongI7BajlKzOuK85AVkwIca9YAGd9JRiw-8WCMapr0TUPi0cprRmDpuF8UXw-txZNLoMtdflFm3nelGPUg0NPoi_zNZYm-BQmN-jsSCFyiDiMOJRpmmPclavdT-c24hTI7MfHxQOrp4RPfpwnxafX5x-Xb6qrdxeXy7OrSou6yVW9X9DAwIaWg7CNBQOwkgxth7a2Gug-SMm1YdB12sjWgCaV83rFZF-fFM8Pfbcx3MyYslqHOXoaqXjb9BK6pue_qVFPqJy3IUdtNi4ZdSZE33Letg1R1RFqRI9RT8GjdSTf4Z8d4c3W3ag_odMjEO0BN84c7frijoGYjLd51HNK6vLD-_9g3x79nYkhpYhWbaPb6LhTwNQ-P4ryo_b5Ufv8EN8f-K-4CjYZSoTBXx7Kk-igl21HFZNLl7-nYxlmn8n68t-tRLMD7aOJmFBHc_2Xt30Dwh3jhg</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Wang, Jun</creator><creator>Cai, Yuanqiang</creator><creator>Liu, Fei Y</creator><creator>Li, Zhe</creator><creator>Yuan, Guo H</creator><creator>Du, Yun G</creator><creator>Hu, Xiu Q</creator><general>NRC Research Press</general><general>Canadian Science Publishing</general><general>Canadian Science Publishing NRC Research Press</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>20210701</creationdate><title>Effect of a vacuum gradient on the consolidation of dredged slurry by vacuum preloading</title><author>Wang, Jun ; Cai, Yuanqiang ; Liu, Fei Y ; Li, Zhe ; Yuan, Guo H ; Du, Yun G ; Hu, Xiu Q</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a634t-33333141d0d5216f4f1c11b90ef7ef3fa11c1d992ac0177ac95c1aa11223b0983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Consolidation</topic><topic>consolidation rate</topic><topic>Differential settlement</topic><topic>Drainage</topic><topic>Dredging</topic><topic>effet de renforcement</topic><topic>Electron microscopy</topic><topic>Engineering</topic><topic>Engineering, Geological</topic><topic>Environmental aspects</topic><topic>Fines</topic><topic>Geology</topic><topic>Geosciences, Multidisciplinary</topic><topic>gradient de vide</topic><topic>Hydrostatic pressure</topic><topic>Mechanical properties</topic><topic>Model testing</topic><topic>Moisture content</topic><topic>Particle analysis</topic><topic>Physical Sciences</topic><topic>Plaques</topic><topic>Plates</topic><topic>Pore water</topic><topic>Pore water pressure</topic><topic>Prefabrication</topic><topic>précharge de vide étagée</topic><topic>Reclamation of land</topic><topic>reinforcement effect</topic><topic>Scanning electron microscopy</topic><topic>Science & Technology</topic><topic>Shear strength</topic><topic>Slurries</topic><topic>Slurry</topic><topic>Soil</topic><topic>Soil mechanics</topic><topic>Soil settlement</topic><topic>Soil strength</topic><topic>Soil surfaces</topic><topic>Soils</topic><topic>stepped vacuum preloading</topic><topic>taux de consolidation</topic><topic>Technology</topic><topic>Vacuum</topic><topic>vacuum gradient</topic><topic>Water content</topic><topic>Water pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Cai, Yuanqiang</creatorcontrib><creatorcontrib>Liu, Fei Y</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Yuan, Guo H</creatorcontrib><creatorcontrib>Du, Yun G</creatorcontrib><creatorcontrib>Hu, Xiu Q</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Canadian geotechnical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jun</au><au>Cai, Yuanqiang</au><au>Liu, Fei Y</au><au>Li, Zhe</au><au>Yuan, Guo H</au><au>Du, Yun G</au><au>Hu, Xiu Q</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of a vacuum gradient on the consolidation of dredged slurry by vacuum preloading</atitle><jtitle>Canadian geotechnical journal</jtitle><stitle>CAN GEOTECH J</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>58</volume><issue>7</issue><spage>1036</spage><epage>1044</epage><pages>1036-1044</pages><issn>0008-3674</issn><eissn>1208-6010</eissn><abstract>In this paper, a large-scale indoor model test was carried out to reinforce dredged slurry by vacuum preloading, and the effect of the vacuum gradient on the reinforcement effect was studied. The vacuum pressure, volume of extracted water, average ground settlement, and excess pore-water pressure were monitored during the test. After the test, the water content and vane shear strength were measured, and a particle analysis test and a scanning electron microscopy test were carried out. The results indicated that a small vacuum gradient could improve the consolidation degree and strength of the soil, and the smaller the vacuum gradient, the better the reinforcement of the soil. In addition, reducing the vacuum gradient could decrease the differential settlement of the soil surface and alleviate the migration of fine particles to the prefabricated drainage plates; therefore, the small vacuum gradient improved the clogging of the prefabricated drainage plates and the uniformity of soil consolidation. However, reducing the vacuum gradient also extended the test period. A vacuum gradient of 20 kPa obtained the fastest consolidation rate of the soil.</abstract><cop>1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7</cop><pub>NRC Research Press</pub><doi>10.1139/cgj-2019-0666</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-3674 |
ispartof | Canadian geotechnical journal, 2021-07, Vol.58 (7), p.1036-1044 |
issn | 0008-3674 1208-6010 |
language | eng |
recordid | cdi_gale_infotraccpiq_668522554 |
source | NRC Research Press; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | Analysis Consolidation consolidation rate Differential settlement Drainage Dredging effet de renforcement Electron microscopy Engineering Engineering, Geological Environmental aspects Fines Geology Geosciences, Multidisciplinary gradient de vide Hydrostatic pressure Mechanical properties Model testing Moisture content Particle analysis Physical Sciences Plaques Plates Pore water Pore water pressure Prefabrication précharge de vide étagée Reclamation of land reinforcement effect Scanning electron microscopy Science & Technology Shear strength Slurries Slurry Soil Soil mechanics Soil settlement Soil strength Soil surfaces Soils stepped vacuum preloading taux de consolidation Technology Vacuum vacuum gradient Water content Water pressure |
title | Effect of a vacuum gradient on the consolidation of dredged slurry by vacuum preloading |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T21%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20a%20vacuum%20gradient%20on%20the%20consolidation%20of%20dredged%20slurry%20by%20vacuum%20preloading&rft.jtitle=Canadian%20geotechnical%20journal&rft.au=Wang,%20Jun&rft.date=2021-07-01&rft.volume=58&rft.issue=7&rft.spage=1036&rft.epage=1044&rft.pages=1036-1044&rft.issn=0008-3674&rft.eissn=1208-6010&rft_id=info:doi/10.1139/cgj-2019-0666&rft_dat=%3Cgale_webof%3EA668522554%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548917482&rft_id=info:pmid/&rft_galeid=A668522554&rfr_iscdi=true |