Effect of a vacuum gradient on the consolidation of dredged slurry by vacuum preloading

In this paper, a large-scale indoor model test was carried out to reinforce dredged slurry by vacuum preloading, and the effect of the vacuum gradient on the reinforcement effect was studied. The vacuum pressure, volume of extracted water, average ground settlement, and excess pore-water pressure we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian geotechnical journal 2021-07, Vol.58 (7), p.1036-1044
Hauptverfasser: Wang, Jun, Cai, Yuanqiang, Liu, Fei Y, Li, Zhe, Yuan, Guo H, Du, Yun G, Hu, Xiu Q
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1044
container_issue 7
container_start_page 1036
container_title Canadian geotechnical journal
container_volume 58
creator Wang, Jun
Cai, Yuanqiang
Liu, Fei Y
Li, Zhe
Yuan, Guo H
Du, Yun G
Hu, Xiu Q
description In this paper, a large-scale indoor model test was carried out to reinforce dredged slurry by vacuum preloading, and the effect of the vacuum gradient on the reinforcement effect was studied. The vacuum pressure, volume of extracted water, average ground settlement, and excess pore-water pressure were monitored during the test. After the test, the water content and vane shear strength were measured, and a particle analysis test and a scanning electron microscopy test were carried out. The results indicated that a small vacuum gradient could improve the consolidation degree and strength of the soil, and the smaller the vacuum gradient, the better the reinforcement of the soil. In addition, reducing the vacuum gradient could decrease the differential settlement of the soil surface and alleviate the migration of fine particles to the prefabricated drainage plates; therefore, the small vacuum gradient improved the clogging of the prefabricated drainage plates and the uniformity of soil consolidation. However, reducing the vacuum gradient also extended the test period. A vacuum gradient of 20 kPa obtained the fastest consolidation rate of the soil.
doi_str_mv 10.1139/cgj-2019-0666
format Article
fullrecord <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_gale_infotraccpiq_668522554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A668522554</galeid><sourcerecordid>A668522554</sourcerecordid><originalsourceid>FETCH-LOGICAL-a634t-33333141d0d5216f4f1c11b90ef7ef3fa11c1d992ac0177ac95c1aa11223b0983</originalsourceid><addsrcrecordid>eNqVks2LFDEQxRtRcFw9em_0JNJrKt2d7hyXYV0XFgU_8Bgy6Upvhp5kNknrzn9vjePXwoCaHFJ5_F5VAq8ongI7BajlKzOuK85AVkwIca9YAGd9JRiw-8WCMapr0TUPi0cprRmDpuF8UXw-txZNLoMtdflFm3nelGPUg0NPoi_zNZYm-BQmN-jsSCFyiDiMOJRpmmPclavdT-c24hTI7MfHxQOrp4RPfpwnxafX5x-Xb6qrdxeXy7OrSou6yVW9X9DAwIaWg7CNBQOwkgxth7a2Gug-SMm1YdB12sjWgCaV83rFZF-fFM8Pfbcx3MyYslqHOXoaqXjb9BK6pue_qVFPqJy3IUdtNi4ZdSZE33Letg1R1RFqRI9RT8GjdSTf4Z8d4c3W3ag_odMjEO0BN84c7frijoGYjLd51HNK6vLD-_9g3x79nYkhpYhWbaPb6LhTwNQ-P4ryo_b5Ufv8EN8f-K-4CjYZSoTBXx7Kk-igl21HFZNLl7-nYxlmn8n68t-tRLMD7aOJmFBHc_2Xt30Dwh3jhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548917482</pqid></control><display><type>article</type><title>Effect of a vacuum gradient on the consolidation of dredged slurry by vacuum preloading</title><source>NRC Research Press</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Wang, Jun ; Cai, Yuanqiang ; Liu, Fei Y ; Li, Zhe ; Yuan, Guo H ; Du, Yun G ; Hu, Xiu Q</creator><creatorcontrib>Wang, Jun ; Cai, Yuanqiang ; Liu, Fei Y ; Li, Zhe ; Yuan, Guo H ; Du, Yun G ; Hu, Xiu Q</creatorcontrib><description>In this paper, a large-scale indoor model test was carried out to reinforce dredged slurry by vacuum preloading, and the effect of the vacuum gradient on the reinforcement effect was studied. The vacuum pressure, volume of extracted water, average ground settlement, and excess pore-water pressure were monitored during the test. After the test, the water content and vane shear strength were measured, and a particle analysis test and a scanning electron microscopy test were carried out. The results indicated that a small vacuum gradient could improve the consolidation degree and strength of the soil, and the smaller the vacuum gradient, the better the reinforcement of the soil. In addition, reducing the vacuum gradient could decrease the differential settlement of the soil surface and alleviate the migration of fine particles to the prefabricated drainage plates; therefore, the small vacuum gradient improved the clogging of the prefabricated drainage plates and the uniformity of soil consolidation. However, reducing the vacuum gradient also extended the test period. A vacuum gradient of 20 kPa obtained the fastest consolidation rate of the soil.</description><identifier>ISSN: 0008-3674</identifier><identifier>EISSN: 1208-6010</identifier><identifier>DOI: 10.1139/cgj-2019-0666</identifier><language>eng</language><publisher>1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7: NRC Research Press</publisher><subject>Analysis ; Consolidation ; consolidation rate ; Differential settlement ; Drainage ; Dredging ; effet de renforcement ; Electron microscopy ; Engineering ; Engineering, Geological ; Environmental aspects ; Fines ; Geology ; Geosciences, Multidisciplinary ; gradient de vide ; Hydrostatic pressure ; Mechanical properties ; Model testing ; Moisture content ; Particle analysis ; Physical Sciences ; Plaques ; Plates ; Pore water ; Pore water pressure ; Prefabrication ; précharge de vide étagée ; Reclamation of land ; reinforcement effect ; Scanning electron microscopy ; Science &amp; Technology ; Shear strength ; Slurries ; Slurry ; Soil ; Soil mechanics ; Soil settlement ; Soil strength ; Soil surfaces ; Soils ; stepped vacuum preloading ; taux de consolidation ; Technology ; Vacuum ; vacuum gradient ; Water content ; Water pressure</subject><ispartof>Canadian geotechnical journal, 2021-07, Vol.58 (7), p.1036-1044</ispartof><rights>COPYRIGHT 2021 NRC Research Press</rights><rights>2021 Published by NRC Research Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>16</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000671895700009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a634t-33333141d0d5216f4f1c11b90ef7ef3fa11c1d992ac0177ac95c1aa11223b0983</citedby><cites>FETCH-LOGICAL-a634t-33333141d0d5216f4f1c11b90ef7ef3fa11c1d992ac0177ac95c1aa11223b0983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://cdnsciencepub.com/doi/pdf/10.1139/cgj-2019-0666$$EPDF$$P50$$Gnrcresearch$$H</linktopdf><linktohtml>$$Uhttps://cdnsciencepub.com/doi/full/10.1139/cgj-2019-0666$$EHTML$$P50$$Gnrcresearch$$H</linktohtml><link.rule.ids>315,781,785,2933,27929,27930,39263,64433,65239</link.rule.ids></links><search><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Cai, Yuanqiang</creatorcontrib><creatorcontrib>Liu, Fei Y</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Yuan, Guo H</creatorcontrib><creatorcontrib>Du, Yun G</creatorcontrib><creatorcontrib>Hu, Xiu Q</creatorcontrib><title>Effect of a vacuum gradient on the consolidation of dredged slurry by vacuum preloading</title><title>Canadian geotechnical journal</title><addtitle>CAN GEOTECH J</addtitle><description>In this paper, a large-scale indoor model test was carried out to reinforce dredged slurry by vacuum preloading, and the effect of the vacuum gradient on the reinforcement effect was studied. The vacuum pressure, volume of extracted water, average ground settlement, and excess pore-water pressure were monitored during the test. After the test, the water content and vane shear strength were measured, and a particle analysis test and a scanning electron microscopy test were carried out. The results indicated that a small vacuum gradient could improve the consolidation degree and strength of the soil, and the smaller the vacuum gradient, the better the reinforcement of the soil. In addition, reducing the vacuum gradient could decrease the differential settlement of the soil surface and alleviate the migration of fine particles to the prefabricated drainage plates; therefore, the small vacuum gradient improved the clogging of the prefabricated drainage plates and the uniformity of soil consolidation. However, reducing the vacuum gradient also extended the test period. A vacuum gradient of 20 kPa obtained the fastest consolidation rate of the soil.</description><subject>Analysis</subject><subject>Consolidation</subject><subject>consolidation rate</subject><subject>Differential settlement</subject><subject>Drainage</subject><subject>Dredging</subject><subject>effet de renforcement</subject><subject>Electron microscopy</subject><subject>Engineering</subject><subject>Engineering, Geological</subject><subject>Environmental aspects</subject><subject>Fines</subject><subject>Geology</subject><subject>Geosciences, Multidisciplinary</subject><subject>gradient de vide</subject><subject>Hydrostatic pressure</subject><subject>Mechanical properties</subject><subject>Model testing</subject><subject>Moisture content</subject><subject>Particle analysis</subject><subject>Physical Sciences</subject><subject>Plaques</subject><subject>Plates</subject><subject>Pore water</subject><subject>Pore water pressure</subject><subject>Prefabrication</subject><subject>précharge de vide étagée</subject><subject>Reclamation of land</subject><subject>reinforcement effect</subject><subject>Scanning electron microscopy</subject><subject>Science &amp; Technology</subject><subject>Shear strength</subject><subject>Slurries</subject><subject>Slurry</subject><subject>Soil</subject><subject>Soil mechanics</subject><subject>Soil settlement</subject><subject>Soil strength</subject><subject>Soil surfaces</subject><subject>Soils</subject><subject>stepped vacuum preloading</subject><subject>taux de consolidation</subject><subject>Technology</subject><subject>Vacuum</subject><subject>vacuum gradient</subject><subject>Water content</subject><subject>Water pressure</subject><issn>0008-3674</issn><issn>1208-6010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqVks2LFDEQxRtRcFw9em_0JNJrKt2d7hyXYV0XFgU_8Bgy6Upvhp5kNknrzn9vjePXwoCaHFJ5_F5VAq8ongI7BajlKzOuK85AVkwIca9YAGd9JRiw-8WCMapr0TUPi0cprRmDpuF8UXw-txZNLoMtdflFm3nelGPUg0NPoi_zNZYm-BQmN-jsSCFyiDiMOJRpmmPclavdT-c24hTI7MfHxQOrp4RPfpwnxafX5x-Xb6qrdxeXy7OrSou6yVW9X9DAwIaWg7CNBQOwkgxth7a2Gug-SMm1YdB12sjWgCaV83rFZF-fFM8Pfbcx3MyYslqHOXoaqXjb9BK6pue_qVFPqJy3IUdtNi4ZdSZE33Letg1R1RFqRI9RT8GjdSTf4Z8d4c3W3ag_odMjEO0BN84c7frijoGYjLd51HNK6vLD-_9g3x79nYkhpYhWbaPb6LhTwNQ-P4ryo_b5Ufv8EN8f-K-4CjYZSoTBXx7Kk-igl21HFZNLl7-nYxlmn8n68t-tRLMD7aOJmFBHc_2Xt30Dwh3jhg</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Wang, Jun</creator><creator>Cai, Yuanqiang</creator><creator>Liu, Fei Y</creator><creator>Li, Zhe</creator><creator>Yuan, Guo H</creator><creator>Du, Yun G</creator><creator>Hu, Xiu Q</creator><general>NRC Research Press</general><general>Canadian Science Publishing</general><general>Canadian Science Publishing NRC Research Press</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>20210701</creationdate><title>Effect of a vacuum gradient on the consolidation of dredged slurry by vacuum preloading</title><author>Wang, Jun ; Cai, Yuanqiang ; Liu, Fei Y ; Li, Zhe ; Yuan, Guo H ; Du, Yun G ; Hu, Xiu Q</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a634t-33333141d0d5216f4f1c11b90ef7ef3fa11c1d992ac0177ac95c1aa11223b0983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Consolidation</topic><topic>consolidation rate</topic><topic>Differential settlement</topic><topic>Drainage</topic><topic>Dredging</topic><topic>effet de renforcement</topic><topic>Electron microscopy</topic><topic>Engineering</topic><topic>Engineering, Geological</topic><topic>Environmental aspects</topic><topic>Fines</topic><topic>Geology</topic><topic>Geosciences, Multidisciplinary</topic><topic>gradient de vide</topic><topic>Hydrostatic pressure</topic><topic>Mechanical properties</topic><topic>Model testing</topic><topic>Moisture content</topic><topic>Particle analysis</topic><topic>Physical Sciences</topic><topic>Plaques</topic><topic>Plates</topic><topic>Pore water</topic><topic>Pore water pressure</topic><topic>Prefabrication</topic><topic>précharge de vide étagée</topic><topic>Reclamation of land</topic><topic>reinforcement effect</topic><topic>Scanning electron microscopy</topic><topic>Science &amp; Technology</topic><topic>Shear strength</topic><topic>Slurries</topic><topic>Slurry</topic><topic>Soil</topic><topic>Soil mechanics</topic><topic>Soil settlement</topic><topic>Soil strength</topic><topic>Soil surfaces</topic><topic>Soils</topic><topic>stepped vacuum preloading</topic><topic>taux de consolidation</topic><topic>Technology</topic><topic>Vacuum</topic><topic>vacuum gradient</topic><topic>Water content</topic><topic>Water pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Cai, Yuanqiang</creatorcontrib><creatorcontrib>Liu, Fei Y</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Yuan, Guo H</creatorcontrib><creatorcontrib>Du, Yun G</creatorcontrib><creatorcontrib>Hu, Xiu Q</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Canadian geotechnical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jun</au><au>Cai, Yuanqiang</au><au>Liu, Fei Y</au><au>Li, Zhe</au><au>Yuan, Guo H</au><au>Du, Yun G</au><au>Hu, Xiu Q</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of a vacuum gradient on the consolidation of dredged slurry by vacuum preloading</atitle><jtitle>Canadian geotechnical journal</jtitle><stitle>CAN GEOTECH J</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>58</volume><issue>7</issue><spage>1036</spage><epage>1044</epage><pages>1036-1044</pages><issn>0008-3674</issn><eissn>1208-6010</eissn><abstract>In this paper, a large-scale indoor model test was carried out to reinforce dredged slurry by vacuum preloading, and the effect of the vacuum gradient on the reinforcement effect was studied. The vacuum pressure, volume of extracted water, average ground settlement, and excess pore-water pressure were monitored during the test. After the test, the water content and vane shear strength were measured, and a particle analysis test and a scanning electron microscopy test were carried out. The results indicated that a small vacuum gradient could improve the consolidation degree and strength of the soil, and the smaller the vacuum gradient, the better the reinforcement of the soil. In addition, reducing the vacuum gradient could decrease the differential settlement of the soil surface and alleviate the migration of fine particles to the prefabricated drainage plates; therefore, the small vacuum gradient improved the clogging of the prefabricated drainage plates and the uniformity of soil consolidation. However, reducing the vacuum gradient also extended the test period. A vacuum gradient of 20 kPa obtained the fastest consolidation rate of the soil.</abstract><cop>1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7</cop><pub>NRC Research Press</pub><doi>10.1139/cgj-2019-0666</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-3674
ispartof Canadian geotechnical journal, 2021-07, Vol.58 (7), p.1036-1044
issn 0008-3674
1208-6010
language eng
recordid cdi_gale_infotraccpiq_668522554
source NRC Research Press; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Analysis
Consolidation
consolidation rate
Differential settlement
Drainage
Dredging
effet de renforcement
Electron microscopy
Engineering
Engineering, Geological
Environmental aspects
Fines
Geology
Geosciences, Multidisciplinary
gradient de vide
Hydrostatic pressure
Mechanical properties
Model testing
Moisture content
Particle analysis
Physical Sciences
Plaques
Plates
Pore water
Pore water pressure
Prefabrication
précharge de vide étagée
Reclamation of land
reinforcement effect
Scanning electron microscopy
Science & Technology
Shear strength
Slurries
Slurry
Soil
Soil mechanics
Soil settlement
Soil strength
Soil surfaces
Soils
stepped vacuum preloading
taux de consolidation
Technology
Vacuum
vacuum gradient
Water content
Water pressure
title Effect of a vacuum gradient on the consolidation of dredged slurry by vacuum preloading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T21%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20a%20vacuum%20gradient%20on%20the%20consolidation%20of%20dredged%20slurry%20by%20vacuum%20preloading&rft.jtitle=Canadian%20geotechnical%20journal&rft.au=Wang,%20Jun&rft.date=2021-07-01&rft.volume=58&rft.issue=7&rft.spage=1036&rft.epage=1044&rft.pages=1036-1044&rft.issn=0008-3674&rft.eissn=1208-6010&rft_id=info:doi/10.1139/cgj-2019-0666&rft_dat=%3Cgale_webof%3EA668522554%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548917482&rft_id=info:pmid/&rft_galeid=A668522554&rfr_iscdi=true