Estimating stand attributes of complex forest types in subtropical mountain environments by combining the shadow fraction method with analyses of high-dynamic-range photographs

Shadow fractions can be overestimated because of topographic shadows, which can occupy a significant area on aerial photographs of mountainous terrain. In this study, we first used high-dynamic-range (HDR) image analysis techniques to extract the original canopy shadow from the topographic shadows o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of forest research 2020-10, Vol.50 (10), p.1093-1099
Hauptverfasser: Hsieh, Yi-Ta, Yu, Kun-Yong, Chen, Chaur-Tzuhn, Chen, Jan-Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Shadow fractions can be overestimated because of topographic shadows, which can occupy a significant area on aerial photographs of mountainous terrain. In this study, we first used high-dynamic-range (HDR) image analysis techniques to extract the original canopy shadow from the topographic shadows on aerial photographs. Subsequently, we applied the shadow fraction method to estimate selected forest attributes (stand height, basal area, and stem volume). In this paper, we discuss the effects of tree shadow fraction normalization, auxiliary spectral information, and forest type on forest attribute estimation. HDR image analysis successfully extracted canopy shadow information from topographic shadows. The tree shadow fraction normalization method had no obvious effect. The shadow fraction enhanced spectral information to estimate stand attributes. Using shadow fractions resulted in better estimates of stand height for mixed-hardwood forest ( = 0.45), basal area for mixed-hardwood forest ( = 0.50), and stem volume for conifer–hardwood forest ( = 0.43). This difference in estimated results is related to the shade patterns produced by stand structures in the different forest types.
ISSN:0045-5067
1208-6037
DOI:10.1139/cjfr-2018-0502