Autothermal thermophilic aerobic digestion (ATAD) Part I: Review of origins, design, and process operation

Increased legislative constraints have fuelled an interest in developing sustainable and economical methods for sludge digestion. Autothermal thermophilic aerobic digestion (ATAD) is a robust process that produces Class A biosolids from a wide range of organic sludge (e.g., animal waste, sewage slud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental engineering and science 2007-11, Vol.6 (6), p.665-678
Hauptverfasser: Layden, Noreen M, Mavinic, Donald S, Kelly, Harlan G, Moles, Richard, Bartlett, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 678
container_issue 6
container_start_page 665
container_title Journal of environmental engineering and science
container_volume 6
creator Layden, Noreen M
Mavinic, Donald S
Kelly, Harlan G
Moles, Richard
Bartlett, John
description Increased legislative constraints have fuelled an interest in developing sustainable and economical methods for sludge digestion. Autothermal thermophilic aerobic digestion (ATAD) is a robust process that produces Class A biosolids from a wide range of organic sludge (e.g., animal waste, sewage sludge, food processing waste etc.). The advantages of this technology include good biomass biodegradation, pasteurization and process stability. Thermophilic temperatures result from the metabolic heat released by microorganisms during digestion. Efficient aeration and mixing are needed in addition to adequate reactor insulation to maintain thermophilic temperatures. Significant advances have been made in the optimization and adaptation of ATAD technology since it was first introduced in the early 1970s. Continuing innovation and advancement of the process is reflected in the number of patents for "next" generation technologies. Despite the apparent benefits of this process, ATAD is still not well understood. This article seeks to establish the existing state-of-the-art for the ATAD process. Information from a wide range of sources is presented to provide an insight into the key issues, discuss some of the advantages and perceived disadvantages, and list some of its operating limitations.
doi_str_mv 10.1139/S07-015
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotraccpiq_176688237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A176688237</galeid><sourcerecordid>A176688237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-828994a7af2c7a4b67a00e8645203d614a90e8090b06e737b8dc019c6139ed173</originalsourceid><addsrcrecordid>eNqFklFP2zAUhSO0STCG9hesPQw2EbCdxI55ixgDJCQQ66S9Wa5zk7pK7WCnTPv3uBTRgoqQH45tfff4HvkmyReCjwjJxPFvzFNMiq1kh-SCpbRgfz-s7beTTyFMcSQ4KXeSaTUf3DABP1MdelTXT0xnNFLg3ThqbVoIg3EWHVSj6ud3dKP8gC5P0C3cG_iHXIOcN62x4RDVEExrD5GyNeq90xACcj14taj_nHxsVBdg70l3kz-_zkanF-nV9fnlaXWV6qLAQ1rSUohccdVQzVU-ZlxhDCXLC4qzmpFciXjEAo8xA57xcVlrTIRmMTzUhGe7ybelb-zgbh57lzMTNHSdsuDmQWZEUEaxeBekuMTxVRrBr6_AqZt7G0NImnFKMp4t3NIl1KoOpLGNG7zSLdgYv3MWGhOvK8IZK8tYtTJ9weve3Ml16GgDFFcNM6M3uu4vC7R3IXhoZO_NTPn_kmC5mA8Z50PG31-lt157CKC8njzDYQnJvm4i-ONt8LXrA8VAxI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237213739</pqid></control><display><type>article</type><title>Autothermal thermophilic aerobic digestion (ATAD) Part I: Review of origins, design, and process operation</title><source>Alma/SFX Local Collection</source><creator>Layden, Noreen M ; Mavinic, Donald S ; Kelly, Harlan G ; Moles, Richard ; Bartlett, John</creator><creatorcontrib>Layden, Noreen M ; Mavinic, Donald S ; Kelly, Harlan G ; Moles, Richard ; Bartlett, John</creatorcontrib><description>Increased legislative constraints have fuelled an interest in developing sustainable and economical methods for sludge digestion. Autothermal thermophilic aerobic digestion (ATAD) is a robust process that produces Class A biosolids from a wide range of organic sludge (e.g., animal waste, sewage sludge, food processing waste etc.). The advantages of this technology include good biomass biodegradation, pasteurization and process stability. Thermophilic temperatures result from the metabolic heat released by microorganisms during digestion. Efficient aeration and mixing are needed in addition to adequate reactor insulation to maintain thermophilic temperatures. Significant advances have been made in the optimization and adaptation of ATAD technology since it was first introduced in the early 1970s. Continuing innovation and advancement of the process is reflected in the number of patents for "next" generation technologies. Despite the apparent benefits of this process, ATAD is still not well understood. This article seeks to establish the existing state-of-the-art for the ATAD process. Information from a wide range of sources is presented to provide an insight into the key issues, discuss some of the advantages and perceived disadvantages, and list some of its operating limitations.</description><identifier>ISSN: 1496-256X</identifier><identifier>ISSN: 1496-2551</identifier><identifier>EISSN: 1496-256X</identifier><identifier>DOI: 10.1139/S07-015</identifier><language>eng</language><publisher>Ottawa: NRC Research Press</publisher><subject>adiabatique ; aerobic ; Aerobic digestion ; Animal wastes ; autothermal ; aérobie ; Bacteria, Thermophilic ; Biodegradation ; biosolides ; Biosolids ; Chemical properties ; digestion ; Fermentation ; Food waste ; Insulation ; Methods ; Microorganisms ; Observations ; Pasteurization ; Physiological aspects ; Sewage sludge ; Sewage sludge digestion ; Sludge ; Sludge digestion ; Thermal properties ; thermophile ; thermophilic ; Waste disposal ; Water treatment</subject><ispartof>Journal of environmental engineering and science, 2007-11, Vol.6 (6), p.665-678</ispartof><rights>COPYRIGHT 2007 NRC Research Press</rights><rights>Copyright National Research Council of Canada Nov 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-828994a7af2c7a4b67a00e8645203d614a90e8090b06e737b8dc019c6139ed173</citedby><cites>FETCH-LOGICAL-c550t-828994a7af2c7a4b67a00e8645203d614a90e8090b06e737b8dc019c6139ed173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Layden, Noreen M</creatorcontrib><creatorcontrib>Mavinic, Donald S</creatorcontrib><creatorcontrib>Kelly, Harlan G</creatorcontrib><creatorcontrib>Moles, Richard</creatorcontrib><creatorcontrib>Bartlett, John</creatorcontrib><title>Autothermal thermophilic aerobic digestion (ATAD) Part I: Review of origins, design, and process operation</title><title>Journal of environmental engineering and science</title><addtitle>Revue du génie et de la science de l'environnement</addtitle><description>Increased legislative constraints have fuelled an interest in developing sustainable and economical methods for sludge digestion. Autothermal thermophilic aerobic digestion (ATAD) is a robust process that produces Class A biosolids from a wide range of organic sludge (e.g., animal waste, sewage sludge, food processing waste etc.). The advantages of this technology include good biomass biodegradation, pasteurization and process stability. Thermophilic temperatures result from the metabolic heat released by microorganisms during digestion. Efficient aeration and mixing are needed in addition to adequate reactor insulation to maintain thermophilic temperatures. Significant advances have been made in the optimization and adaptation of ATAD technology since it was first introduced in the early 1970s. Continuing innovation and advancement of the process is reflected in the number of patents for "next" generation technologies. Despite the apparent benefits of this process, ATAD is still not well understood. This article seeks to establish the existing state-of-the-art for the ATAD process. Information from a wide range of sources is presented to provide an insight into the key issues, discuss some of the advantages and perceived disadvantages, and list some of its operating limitations.</description><subject>adiabatique</subject><subject>aerobic</subject><subject>Aerobic digestion</subject><subject>Animal wastes</subject><subject>autothermal</subject><subject>aérobie</subject><subject>Bacteria, Thermophilic</subject><subject>Biodegradation</subject><subject>biosolides</subject><subject>Biosolids</subject><subject>Chemical properties</subject><subject>digestion</subject><subject>Fermentation</subject><subject>Food waste</subject><subject>Insulation</subject><subject>Methods</subject><subject>Microorganisms</subject><subject>Observations</subject><subject>Pasteurization</subject><subject>Physiological aspects</subject><subject>Sewage sludge</subject><subject>Sewage sludge digestion</subject><subject>Sludge</subject><subject>Sludge digestion</subject><subject>Thermal properties</subject><subject>thermophile</subject><subject>thermophilic</subject><subject>Waste disposal</subject><subject>Water treatment</subject><issn>1496-256X</issn><issn>1496-2551</issn><issn>1496-256X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFklFP2zAUhSO0STCG9hesPQw2EbCdxI55ixgDJCQQ66S9Wa5zk7pK7WCnTPv3uBTRgoqQH45tfff4HvkmyReCjwjJxPFvzFNMiq1kh-SCpbRgfz-s7beTTyFMcSQ4KXeSaTUf3DABP1MdelTXT0xnNFLg3ThqbVoIg3EWHVSj6ud3dKP8gC5P0C3cG_iHXIOcN62x4RDVEExrD5GyNeq90xACcj14taj_nHxsVBdg70l3kz-_zkanF-nV9fnlaXWV6qLAQ1rSUohccdVQzVU-ZlxhDCXLC4qzmpFciXjEAo8xA57xcVlrTIRmMTzUhGe7ybelb-zgbh57lzMTNHSdsuDmQWZEUEaxeBekuMTxVRrBr6_AqZt7G0NImnFKMp4t3NIl1KoOpLGNG7zSLdgYv3MWGhOvK8IZK8tYtTJ9weve3Ml16GgDFFcNM6M3uu4vC7R3IXhoZO_NTPn_kmC5mA8Z50PG31-lt157CKC8njzDYQnJvm4i-ONt8LXrA8VAxI4</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Layden, Noreen M</creator><creator>Mavinic, Donald S</creator><creator>Kelly, Harlan G</creator><creator>Moles, Richard</creator><creator>Bartlett, John</creator><general>NRC Research Press</general><general>ICE Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7T7</scope><scope>7TV</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>KR7</scope></search><sort><creationdate>20071101</creationdate><title>Autothermal thermophilic aerobic digestion (ATAD) Part I: Review of origins, design, and process operation</title><author>Layden, Noreen M ; Mavinic, Donald S ; Kelly, Harlan G ; Moles, Richard ; Bartlett, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-828994a7af2c7a4b67a00e8645203d614a90e8090b06e737b8dc019c6139ed173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>adiabatique</topic><topic>aerobic</topic><topic>Aerobic digestion</topic><topic>Animal wastes</topic><topic>autothermal</topic><topic>aérobie</topic><topic>Bacteria, Thermophilic</topic><topic>Biodegradation</topic><topic>biosolides</topic><topic>Biosolids</topic><topic>Chemical properties</topic><topic>digestion</topic><topic>Fermentation</topic><topic>Food waste</topic><topic>Insulation</topic><topic>Methods</topic><topic>Microorganisms</topic><topic>Observations</topic><topic>Pasteurization</topic><topic>Physiological aspects</topic><topic>Sewage sludge</topic><topic>Sewage sludge digestion</topic><topic>Sludge</topic><topic>Sludge digestion</topic><topic>Thermal properties</topic><topic>thermophile</topic><topic>thermophilic</topic><topic>Waste disposal</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Layden, Noreen M</creatorcontrib><creatorcontrib>Mavinic, Donald S</creatorcontrib><creatorcontrib>Kelly, Harlan G</creatorcontrib><creatorcontrib>Moles, Richard</creatorcontrib><creatorcontrib>Bartlett, John</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of environmental engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Layden, Noreen M</au><au>Mavinic, Donald S</au><au>Kelly, Harlan G</au><au>Moles, Richard</au><au>Bartlett, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autothermal thermophilic aerobic digestion (ATAD) Part I: Review of origins, design, and process operation</atitle><jtitle>Journal of environmental engineering and science</jtitle><addtitle>Revue du génie et de la science de l'environnement</addtitle><date>2007-11-01</date><risdate>2007</risdate><volume>6</volume><issue>6</issue><spage>665</spage><epage>678</epage><pages>665-678</pages><issn>1496-256X</issn><issn>1496-2551</issn><eissn>1496-256X</eissn><abstract>Increased legislative constraints have fuelled an interest in developing sustainable and economical methods for sludge digestion. Autothermal thermophilic aerobic digestion (ATAD) is a robust process that produces Class A biosolids from a wide range of organic sludge (e.g., animal waste, sewage sludge, food processing waste etc.). The advantages of this technology include good biomass biodegradation, pasteurization and process stability. Thermophilic temperatures result from the metabolic heat released by microorganisms during digestion. Efficient aeration and mixing are needed in addition to adequate reactor insulation to maintain thermophilic temperatures. Significant advances have been made in the optimization and adaptation of ATAD technology since it was first introduced in the early 1970s. Continuing innovation and advancement of the process is reflected in the number of patents for "next" generation technologies. Despite the apparent benefits of this process, ATAD is still not well understood. This article seeks to establish the existing state-of-the-art for the ATAD process. Information from a wide range of sources is presented to provide an insight into the key issues, discuss some of the advantages and perceived disadvantages, and list some of its operating limitations.</abstract><cop>Ottawa</cop><pub>NRC Research Press</pub><doi>10.1139/S07-015</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1496-256X
ispartof Journal of environmental engineering and science, 2007-11, Vol.6 (6), p.665-678
issn 1496-256X
1496-2551
1496-256X
language eng
recordid cdi_gale_infotraccpiq_176688237
source Alma/SFX Local Collection
subjects adiabatique
aerobic
Aerobic digestion
Animal wastes
autothermal
aérobie
Bacteria, Thermophilic
Biodegradation
biosolides
Biosolids
Chemical properties
digestion
Fermentation
Food waste
Insulation
Methods
Microorganisms
Observations
Pasteurization
Physiological aspects
Sewage sludge
Sewage sludge digestion
Sludge
Sludge digestion
Thermal properties
thermophile
thermophilic
Waste disposal
Water treatment
title Autothermal thermophilic aerobic digestion (ATAD) Part I: Review of origins, design, and process operation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autothermal%20thermophilic%20aerobic%20digestion%20(ATAD)%20Part%20I:%20Review%20of%20origins,%20design,%20and%20process%20operation&rft.jtitle=Journal%20of%20environmental%20engineering%20and%20science&rft.au=Layden,%20Noreen%20M&rft.date=2007-11-01&rft.volume=6&rft.issue=6&rft.spage=665&rft.epage=678&rft.pages=665-678&rft.issn=1496-256X&rft.eissn=1496-256X&rft_id=info:doi/10.1139/S07-015&rft_dat=%3Cgale_proqu%3EA176688237%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237213739&rft_id=info:pmid/&rft_galeid=A176688237&rfr_iscdi=true