Autothermal thermophilic aerobic digestion (ATAD) Part I: Review of origins, design, and process operation
Increased legislative constraints have fuelled an interest in developing sustainable and economical methods for sludge digestion. Autothermal thermophilic aerobic digestion (ATAD) is a robust process that produces Class A biosolids from a wide range of organic sludge (e.g., animal waste, sewage slud...
Gespeichert in:
Veröffentlicht in: | Journal of environmental engineering and science 2007-11, Vol.6 (6), p.665-678 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 678 |
---|---|
container_issue | 6 |
container_start_page | 665 |
container_title | Journal of environmental engineering and science |
container_volume | 6 |
creator | Layden, Noreen M Mavinic, Donald S Kelly, Harlan G Moles, Richard Bartlett, John |
description | Increased legislative constraints have fuelled an interest in developing sustainable and economical methods for sludge digestion. Autothermal thermophilic aerobic digestion (ATAD) is a robust process that produces Class A biosolids from a wide range of organic sludge (e.g., animal waste, sewage sludge, food processing waste etc.). The advantages of this technology include good biomass biodegradation, pasteurization and process stability. Thermophilic temperatures result from the metabolic heat released by microorganisms during digestion. Efficient aeration and mixing are needed in addition to adequate reactor insulation to maintain thermophilic temperatures. Significant advances have been made in the optimization and adaptation of ATAD technology since it was first introduced in the early 1970s. Continuing innovation and advancement of the process is reflected in the number of patents for "next" generation technologies. Despite the apparent benefits of this process, ATAD is still not well understood. This article seeks to establish the existing state-of-the-art for the ATAD process. Information from a wide range of sources is presented to provide an insight into the key issues, discuss some of the advantages and perceived disadvantages, and list some of its operating limitations. |
doi_str_mv | 10.1139/S07-015 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotraccpiq_176688237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A176688237</galeid><sourcerecordid>A176688237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-828994a7af2c7a4b67a00e8645203d614a90e8090b06e737b8dc019c6139ed173</originalsourceid><addsrcrecordid>eNqFklFP2zAUhSO0STCG9hesPQw2EbCdxI55ixgDJCQQ66S9Wa5zk7pK7WCnTPv3uBTRgoqQH45tfff4HvkmyReCjwjJxPFvzFNMiq1kh-SCpbRgfz-s7beTTyFMcSQ4KXeSaTUf3DABP1MdelTXT0xnNFLg3ThqbVoIg3EWHVSj6ud3dKP8gC5P0C3cG_iHXIOcN62x4RDVEExrD5GyNeq90xACcj14taj_nHxsVBdg70l3kz-_zkanF-nV9fnlaXWV6qLAQ1rSUohccdVQzVU-ZlxhDCXLC4qzmpFciXjEAo8xA57xcVlrTIRmMTzUhGe7ybelb-zgbh57lzMTNHSdsuDmQWZEUEaxeBekuMTxVRrBr6_AqZt7G0NImnFKMp4t3NIl1KoOpLGNG7zSLdgYv3MWGhOvK8IZK8tYtTJ9weve3Ml16GgDFFcNM6M3uu4vC7R3IXhoZO_NTPn_kmC5mA8Z50PG31-lt157CKC8njzDYQnJvm4i-ONt8LXrA8VAxI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237213739</pqid></control><display><type>article</type><title>Autothermal thermophilic aerobic digestion (ATAD) Part I: Review of origins, design, and process operation</title><source>Alma/SFX Local Collection</source><creator>Layden, Noreen M ; Mavinic, Donald S ; Kelly, Harlan G ; Moles, Richard ; Bartlett, John</creator><creatorcontrib>Layden, Noreen M ; Mavinic, Donald S ; Kelly, Harlan G ; Moles, Richard ; Bartlett, John</creatorcontrib><description>Increased legislative constraints have fuelled an interest in developing sustainable and economical methods for sludge digestion. Autothermal thermophilic aerobic digestion (ATAD) is a robust process that produces Class A biosolids from a wide range of organic sludge (e.g., animal waste, sewage sludge, food processing waste etc.). The advantages of this technology include good biomass biodegradation, pasteurization and process stability. Thermophilic temperatures result from the metabolic heat released by microorganisms during digestion. Efficient aeration and mixing are needed in addition to adequate reactor insulation to maintain thermophilic temperatures. Significant advances have been made in the optimization and adaptation of ATAD technology since it was first introduced in the early 1970s. Continuing innovation and advancement of the process is reflected in the number of patents for "next" generation technologies. Despite the apparent benefits of this process, ATAD is still not well understood. This article seeks to establish the existing state-of-the-art for the ATAD process. Information from a wide range of sources is presented to provide an insight into the key issues, discuss some of the advantages and perceived disadvantages, and list some of its operating limitations.</description><identifier>ISSN: 1496-256X</identifier><identifier>ISSN: 1496-2551</identifier><identifier>EISSN: 1496-256X</identifier><identifier>DOI: 10.1139/S07-015</identifier><language>eng</language><publisher>Ottawa: NRC Research Press</publisher><subject>adiabatique ; aerobic ; Aerobic digestion ; Animal wastes ; autothermal ; aérobie ; Bacteria, Thermophilic ; Biodegradation ; biosolides ; Biosolids ; Chemical properties ; digestion ; Fermentation ; Food waste ; Insulation ; Methods ; Microorganisms ; Observations ; Pasteurization ; Physiological aspects ; Sewage sludge ; Sewage sludge digestion ; Sludge ; Sludge digestion ; Thermal properties ; thermophile ; thermophilic ; Waste disposal ; Water treatment</subject><ispartof>Journal of environmental engineering and science, 2007-11, Vol.6 (6), p.665-678</ispartof><rights>COPYRIGHT 2007 NRC Research Press</rights><rights>Copyright National Research Council of Canada Nov 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-828994a7af2c7a4b67a00e8645203d614a90e8090b06e737b8dc019c6139ed173</citedby><cites>FETCH-LOGICAL-c550t-828994a7af2c7a4b67a00e8645203d614a90e8090b06e737b8dc019c6139ed173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Layden, Noreen M</creatorcontrib><creatorcontrib>Mavinic, Donald S</creatorcontrib><creatorcontrib>Kelly, Harlan G</creatorcontrib><creatorcontrib>Moles, Richard</creatorcontrib><creatorcontrib>Bartlett, John</creatorcontrib><title>Autothermal thermophilic aerobic digestion (ATAD) Part I: Review of origins, design, and process operation</title><title>Journal of environmental engineering and science</title><addtitle>Revue du génie et de la science de l'environnement</addtitle><description>Increased legislative constraints have fuelled an interest in developing sustainable and economical methods for sludge digestion. Autothermal thermophilic aerobic digestion (ATAD) is a robust process that produces Class A biosolids from a wide range of organic sludge (e.g., animal waste, sewage sludge, food processing waste etc.). The advantages of this technology include good biomass biodegradation, pasteurization and process stability. Thermophilic temperatures result from the metabolic heat released by microorganisms during digestion. Efficient aeration and mixing are needed in addition to adequate reactor insulation to maintain thermophilic temperatures. Significant advances have been made in the optimization and adaptation of ATAD technology since it was first introduced in the early 1970s. Continuing innovation and advancement of the process is reflected in the number of patents for "next" generation technologies. Despite the apparent benefits of this process, ATAD is still not well understood. This article seeks to establish the existing state-of-the-art for the ATAD process. Information from a wide range of sources is presented to provide an insight into the key issues, discuss some of the advantages and perceived disadvantages, and list some of its operating limitations.</description><subject>adiabatique</subject><subject>aerobic</subject><subject>Aerobic digestion</subject><subject>Animal wastes</subject><subject>autothermal</subject><subject>aérobie</subject><subject>Bacteria, Thermophilic</subject><subject>Biodegradation</subject><subject>biosolides</subject><subject>Biosolids</subject><subject>Chemical properties</subject><subject>digestion</subject><subject>Fermentation</subject><subject>Food waste</subject><subject>Insulation</subject><subject>Methods</subject><subject>Microorganisms</subject><subject>Observations</subject><subject>Pasteurization</subject><subject>Physiological aspects</subject><subject>Sewage sludge</subject><subject>Sewage sludge digestion</subject><subject>Sludge</subject><subject>Sludge digestion</subject><subject>Thermal properties</subject><subject>thermophile</subject><subject>thermophilic</subject><subject>Waste disposal</subject><subject>Water treatment</subject><issn>1496-256X</issn><issn>1496-2551</issn><issn>1496-256X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFklFP2zAUhSO0STCG9hesPQw2EbCdxI55ixgDJCQQ66S9Wa5zk7pK7WCnTPv3uBTRgoqQH45tfff4HvkmyReCjwjJxPFvzFNMiq1kh-SCpbRgfz-s7beTTyFMcSQ4KXeSaTUf3DABP1MdelTXT0xnNFLg3ThqbVoIg3EWHVSj6ud3dKP8gC5P0C3cG_iHXIOcN62x4RDVEExrD5GyNeq90xACcj14taj_nHxsVBdg70l3kz-_zkanF-nV9fnlaXWV6qLAQ1rSUohccdVQzVU-ZlxhDCXLC4qzmpFciXjEAo8xA57xcVlrTIRmMTzUhGe7ybelb-zgbh57lzMTNHSdsuDmQWZEUEaxeBekuMTxVRrBr6_AqZt7G0NImnFKMp4t3NIl1KoOpLGNG7zSLdgYv3MWGhOvK8IZK8tYtTJ9weve3Ml16GgDFFcNM6M3uu4vC7R3IXhoZO_NTPn_kmC5mA8Z50PG31-lt157CKC8njzDYQnJvm4i-ONt8LXrA8VAxI4</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Layden, Noreen M</creator><creator>Mavinic, Donald S</creator><creator>Kelly, Harlan G</creator><creator>Moles, Richard</creator><creator>Bartlett, John</creator><general>NRC Research Press</general><general>ICE Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7T7</scope><scope>7TV</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>KR7</scope></search><sort><creationdate>20071101</creationdate><title>Autothermal thermophilic aerobic digestion (ATAD) Part I: Review of origins, design, and process operation</title><author>Layden, Noreen M ; Mavinic, Donald S ; Kelly, Harlan G ; Moles, Richard ; Bartlett, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-828994a7af2c7a4b67a00e8645203d614a90e8090b06e737b8dc019c6139ed173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>adiabatique</topic><topic>aerobic</topic><topic>Aerobic digestion</topic><topic>Animal wastes</topic><topic>autothermal</topic><topic>aérobie</topic><topic>Bacteria, Thermophilic</topic><topic>Biodegradation</topic><topic>biosolides</topic><topic>Biosolids</topic><topic>Chemical properties</topic><topic>digestion</topic><topic>Fermentation</topic><topic>Food waste</topic><topic>Insulation</topic><topic>Methods</topic><topic>Microorganisms</topic><topic>Observations</topic><topic>Pasteurization</topic><topic>Physiological aspects</topic><topic>Sewage sludge</topic><topic>Sewage sludge digestion</topic><topic>Sludge</topic><topic>Sludge digestion</topic><topic>Thermal properties</topic><topic>thermophile</topic><topic>thermophilic</topic><topic>Waste disposal</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Layden, Noreen M</creatorcontrib><creatorcontrib>Mavinic, Donald S</creatorcontrib><creatorcontrib>Kelly, Harlan G</creatorcontrib><creatorcontrib>Moles, Richard</creatorcontrib><creatorcontrib>Bartlett, John</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of environmental engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Layden, Noreen M</au><au>Mavinic, Donald S</au><au>Kelly, Harlan G</au><au>Moles, Richard</au><au>Bartlett, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autothermal thermophilic aerobic digestion (ATAD) Part I: Review of origins, design, and process operation</atitle><jtitle>Journal of environmental engineering and science</jtitle><addtitle>Revue du génie et de la science de l'environnement</addtitle><date>2007-11-01</date><risdate>2007</risdate><volume>6</volume><issue>6</issue><spage>665</spage><epage>678</epage><pages>665-678</pages><issn>1496-256X</issn><issn>1496-2551</issn><eissn>1496-256X</eissn><abstract>Increased legislative constraints have fuelled an interest in developing sustainable and economical methods for sludge digestion. Autothermal thermophilic aerobic digestion (ATAD) is a robust process that produces Class A biosolids from a wide range of organic sludge (e.g., animal waste, sewage sludge, food processing waste etc.). The advantages of this technology include good biomass biodegradation, pasteurization and process stability. Thermophilic temperatures result from the metabolic heat released by microorganisms during digestion. Efficient aeration and mixing are needed in addition to adequate reactor insulation to maintain thermophilic temperatures. Significant advances have been made in the optimization and adaptation of ATAD technology since it was first introduced in the early 1970s. Continuing innovation and advancement of the process is reflected in the number of patents for "next" generation technologies. Despite the apparent benefits of this process, ATAD is still not well understood. This article seeks to establish the existing state-of-the-art for the ATAD process. Information from a wide range of sources is presented to provide an insight into the key issues, discuss some of the advantages and perceived disadvantages, and list some of its operating limitations.</abstract><cop>Ottawa</cop><pub>NRC Research Press</pub><doi>10.1139/S07-015</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1496-256X |
ispartof | Journal of environmental engineering and science, 2007-11, Vol.6 (6), p.665-678 |
issn | 1496-256X 1496-2551 1496-256X |
language | eng |
recordid | cdi_gale_infotraccpiq_176688237 |
source | Alma/SFX Local Collection |
subjects | adiabatique aerobic Aerobic digestion Animal wastes autothermal aérobie Bacteria, Thermophilic Biodegradation biosolides Biosolids Chemical properties digestion Fermentation Food waste Insulation Methods Microorganisms Observations Pasteurization Physiological aspects Sewage sludge Sewage sludge digestion Sludge Sludge digestion Thermal properties thermophile thermophilic Waste disposal Water treatment |
title | Autothermal thermophilic aerobic digestion (ATAD) Part I: Review of origins, design, and process operation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autothermal%20thermophilic%20aerobic%20digestion%20(ATAD)%20Part%20I:%20Review%20of%20origins,%20design,%20and%20process%20operation&rft.jtitle=Journal%20of%20environmental%20engineering%20and%20science&rft.au=Layden,%20Noreen%20M&rft.date=2007-11-01&rft.volume=6&rft.issue=6&rft.spage=665&rft.epage=678&rft.pages=665-678&rft.issn=1496-256X&rft.eissn=1496-256X&rft_id=info:doi/10.1139/S07-015&rft_dat=%3Cgale_proqu%3EA176688237%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237213739&rft_id=info:pmid/&rft_galeid=A176688237&rfr_iscdi=true |