Supply Chain Management in the Digital Economy: Case Studies of Deep Learning Technology Applications

Supply chain management (SCM) is pivotal in orchestrating the flow of goods and services from suppliers to consumers, fundamentally shaping business operations worldwide. However, traditional SCM faces significant limitations, such as inefficiencies in handling complex data structures and adapting t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global information management 2024-01, Vol.32 (1), p.1-27
Hauptverfasser: Huang, Anzhong, Zhuang, Jianming, Ren, Yuheng, Rao, Yun, Tsai, Sangbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 1
container_start_page 1
container_title Journal of global information management
container_volume 32
creator Huang, Anzhong
Zhuang, Jianming
Ren, Yuheng
Rao, Yun
Tsai, Sangbing
description Supply chain management (SCM) is pivotal in orchestrating the flow of goods and services from suppliers to consumers, fundamentally shaping business operations worldwide. However, traditional SCM faces significant limitations, such as inefficiencies in handling complex data structures and adapting to rapid market changes, which undermine operational effectiveness. The application of deep learning technologies in SCM is increasingly recognized as crucial, offering powerful tools for real-time visibility, predictive analytics, and enhanced decision-making capabilities. We propose a VAE-GNN-DRL network model that integrates Variational Autoencoder (VAE), Graph Neural Network (GNN), and Deep Reinforcement Learning (DRL) to address these challenges by efficiently processing and analyzing complex supply chain data.
doi_str_mv 10.4018/JGIM.361589
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A820985711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A820985711</galeid><sourcerecordid>A820985711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2289-43702763c5c221d35908483699fbe1b30bb6e3623f58e46215434f7b47dd275a3</originalsourceid><addsrcrecordid>eNptkU1r3DAQhk1poWmaU_-AoMfijaSxbKu37SbNBxtySHoWsjz2KtiSK3kP_vdRuoUlsOggjXjmHYYny74xuiooqy_vb-4eVlAyUcsP2RkTAHklpfiY3rTkeQWV-Jx9ifGFUgq0YGcZPu2naVjIZqetIw_a6R5HdDNJ1bxDcmV7O-uBXBvv_Lj8JBsdkTzN-9ZiJL4jV4gT2aIOzrqePKPZOT_4fiHrlGuNnq138Wv2qdNDxIv_93n25_f18-Y23z7e3G3W29xwXsu8gIryqgQjUs1aEJLWRQ2llF2DrAHaNCVCyaETNRYlZ6KAoquaompbXgkN59n3Q-4U_N89xlm9-H1waaQCBlwAZ1QeqV4PqKzr_By0GW00al1zKmtRMZao_ATVo8OgB--ws-n7Hb86wafT4mjNyYYfhwYTfIwBOzUFO-qwKEbVm071plMddCb614FOQo5bDYv6Z04dzaXRat6diuDwCg9gpOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132532109</pqid></control><display><type>article</type><title>Supply Chain Management in the Digital Economy: Case Studies of Deep Learning Technology Applications</title><source>Alma/SFX Local Collection</source><creator>Huang, Anzhong ; Zhuang, Jianming ; Ren, Yuheng ; Rao, Yun ; Tsai, Sangbing</creator><creatorcontrib>Huang, Anzhong ; Zhuang, Jianming ; Ren, Yuheng ; Rao, Yun ; Tsai, Sangbing</creatorcontrib><description>Supply chain management (SCM) is pivotal in orchestrating the flow of goods and services from suppliers to consumers, fundamentally shaping business operations worldwide. However, traditional SCM faces significant limitations, such as inefficiencies in handling complex data structures and adapting to rapid market changes, which undermine operational effectiveness. The application of deep learning technologies in SCM is increasingly recognized as crucial, offering powerful tools for real-time visibility, predictive analytics, and enhanced decision-making capabilities. We propose a VAE-GNN-DRL network model that integrates Variational Autoencoder (VAE), Graph Neural Network (GNN), and Deep Reinforcement Learning (DRL) to address these challenges by efficiently processing and analyzing complex supply chain data.</description><identifier>ISSN: 1062-7375</identifier><identifier>EISSN: 1533-7995</identifier><identifier>DOI: 10.4018/JGIM.361589</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Accuracy ; Business operations ; Case studies ; Consumers ; Data structures ; Decision making ; Deep learning ; Digital economy ; Economic aspects ; Efficiency ; Graph neural networks ; Information management ; Internet of Things ; Inventory ; Inventory management ; Logistics ; Machine learning ; Neural networks ; Predictive analytics ; Real time ; Suppliers ; Supply chain management ; Supply chains</subject><ispartof>Journal of global information management, 2024-01, Vol.32 (1), p.1-27</ispartof><rights>COPYRIGHT 2024 IGI Global</rights><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2289-43702763c5c221d35908483699fbe1b30bb6e3623f58e46215434f7b47dd275a3</cites><orcidid>0009-0002-9679-9947 ; 0009-0009-9605-4233 ; 0000-0001-6988-5829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Huang, Anzhong</creatorcontrib><creatorcontrib>Zhuang, Jianming</creatorcontrib><creatorcontrib>Ren, Yuheng</creatorcontrib><creatorcontrib>Rao, Yun</creatorcontrib><creatorcontrib>Tsai, Sangbing</creatorcontrib><title>Supply Chain Management in the Digital Economy: Case Studies of Deep Learning Technology Applications</title><title>Journal of global information management</title><description>Supply chain management (SCM) is pivotal in orchestrating the flow of goods and services from suppliers to consumers, fundamentally shaping business operations worldwide. However, traditional SCM faces significant limitations, such as inefficiencies in handling complex data structures and adapting to rapid market changes, which undermine operational effectiveness. The application of deep learning technologies in SCM is increasingly recognized as crucial, offering powerful tools for real-time visibility, predictive analytics, and enhanced decision-making capabilities. We propose a VAE-GNN-DRL network model that integrates Variational Autoencoder (VAE), Graph Neural Network (GNN), and Deep Reinforcement Learning (DRL) to address these challenges by efficiently processing and analyzing complex supply chain data.</description><subject>Accuracy</subject><subject>Business operations</subject><subject>Case studies</subject><subject>Consumers</subject><subject>Data structures</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Digital economy</subject><subject>Economic aspects</subject><subject>Efficiency</subject><subject>Graph neural networks</subject><subject>Information management</subject><subject>Internet of Things</subject><subject>Inventory</subject><subject>Inventory management</subject><subject>Logistics</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Predictive analytics</subject><subject>Real time</subject><subject>Suppliers</subject><subject>Supply chain management</subject><subject>Supply chains</subject><issn>1062-7375</issn><issn>1533-7995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkU1r3DAQhk1poWmaU_-AoMfijaSxbKu37SbNBxtySHoWsjz2KtiSK3kP_vdRuoUlsOggjXjmHYYny74xuiooqy_vb-4eVlAyUcsP2RkTAHklpfiY3rTkeQWV-Jx9ifGFUgq0YGcZPu2naVjIZqetIw_a6R5HdDNJ1bxDcmV7O-uBXBvv_Lj8JBsdkTzN-9ZiJL4jV4gT2aIOzrqePKPZOT_4fiHrlGuNnq138Wv2qdNDxIv_93n25_f18-Y23z7e3G3W29xwXsu8gIryqgQjUs1aEJLWRQ2llF2DrAHaNCVCyaETNRYlZ6KAoquaompbXgkN59n3Q-4U_N89xlm9-H1waaQCBlwAZ1QeqV4PqKzr_By0GW00al1zKmtRMZao_ATVo8OgB--ws-n7Hb86wafT4mjNyYYfhwYTfIwBOzUFO-qwKEbVm071plMddCb614FOQo5bDYv6Z04dzaXRat6diuDwCg9gpOg</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Huang, Anzhong</creator><creator>Zhuang, Jianming</creator><creator>Ren, Yuheng</creator><creator>Rao, Yun</creator><creator>Tsai, Sangbing</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X5</scope><scope>7XB</scope><scope>87Z</scope><scope>88K</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>M2T</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0009-0002-9679-9947</orcidid><orcidid>https://orcid.org/0009-0009-9605-4233</orcidid><orcidid>https://orcid.org/0000-0001-6988-5829</orcidid></search><sort><creationdate>20240101</creationdate><title>Supply Chain Management in the Digital Economy: Case Studies of Deep Learning Technology Applications</title><author>Huang, Anzhong ; Zhuang, Jianming ; Ren, Yuheng ; Rao, Yun ; Tsai, Sangbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2289-43702763c5c221d35908483699fbe1b30bb6e3623f58e46215434f7b47dd275a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Business operations</topic><topic>Case studies</topic><topic>Consumers</topic><topic>Data structures</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Digital economy</topic><topic>Economic aspects</topic><topic>Efficiency</topic><topic>Graph neural networks</topic><topic>Information management</topic><topic>Internet of Things</topic><topic>Inventory</topic><topic>Inventory management</topic><topic>Logistics</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Predictive analytics</topic><topic>Real time</topic><topic>Suppliers</topic><topic>Supply chain management</topic><topic>Supply chains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Anzhong</creatorcontrib><creatorcontrib>Zhuang, Jianming</creatorcontrib><creatorcontrib>Ren, Yuheng</creatorcontrib><creatorcontrib>Rao, Yun</creatorcontrib><creatorcontrib>Tsai, Sangbing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Proquest Entrepreneurship</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global information management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Anzhong</au><au>Zhuang, Jianming</au><au>Ren, Yuheng</au><au>Rao, Yun</au><au>Tsai, Sangbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supply Chain Management in the Digital Economy: Case Studies of Deep Learning Technology Applications</atitle><jtitle>Journal of global information management</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>32</volume><issue>1</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><issn>1062-7375</issn><eissn>1533-7995</eissn><abstract>Supply chain management (SCM) is pivotal in orchestrating the flow of goods and services from suppliers to consumers, fundamentally shaping business operations worldwide. However, traditional SCM faces significant limitations, such as inefficiencies in handling complex data structures and adapting to rapid market changes, which undermine operational effectiveness. The application of deep learning technologies in SCM is increasingly recognized as crucial, offering powerful tools for real-time visibility, predictive analytics, and enhanced decision-making capabilities. We propose a VAE-GNN-DRL network model that integrates Variational Autoencoder (VAE), Graph Neural Network (GNN), and Deep Reinforcement Learning (DRL) to address these challenges by efficiently processing and analyzing complex supply chain data.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/JGIM.361589</doi><tpages>27</tpages><orcidid>https://orcid.org/0009-0002-9679-9947</orcidid><orcidid>https://orcid.org/0009-0009-9605-4233</orcidid><orcidid>https://orcid.org/0000-0001-6988-5829</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1062-7375
ispartof Journal of global information management, 2024-01, Vol.32 (1), p.1-27
issn 1062-7375
1533-7995
language eng
recordid cdi_gale_infotracacademiconefile_A820985711
source Alma/SFX Local Collection
subjects Accuracy
Business operations
Case studies
Consumers
Data structures
Decision making
Deep learning
Digital economy
Economic aspects
Efficiency
Graph neural networks
Information management
Internet of Things
Inventory
Inventory management
Logistics
Machine learning
Neural networks
Predictive analytics
Real time
Suppliers
Supply chain management
Supply chains
title Supply Chain Management in the Digital Economy: Case Studies of Deep Learning Technology Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supply%20Chain%20Management%20in%20the%20Digital%20Economy:%20Case%20Studies%20of%20Deep%20Learning%20Technology%20Applications&rft.jtitle=Journal%20of%20global%20information%20management&rft.au=Huang,%20Anzhong&rft.date=2024-01-01&rft.volume=32&rft.issue=1&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.issn=1062-7375&rft.eissn=1533-7995&rft_id=info:doi/10.4018/JGIM.361589&rft_dat=%3Cgale_proqu%3EA820985711%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132532109&rft_id=info:pmid/&rft_galeid=A820985711&rfr_iscdi=true