Analysis and Optimization of a s-CO[sub.2] Cycle Coupled to Solar, Biomass, and Geothermal Energy Technologies

This paper presents an analysis and optimization of a polygeneration power-production system that integrates a concentrating solar tower, a supercritical CO[sub.2] Brayton cycle, a double-flash geothermal Rankine cycle, and an internal combustion engine. The concentrating solar tower is analyzed und...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2024-10, Vol.17 (20)
Hauptverfasser: Anaya-Reyes, Orlando, Salgado-Transito, Iván, Rodríguez-Alejandro, David Aarón, Zaleta-Aguilar, Alejandro, Martínez-Pérez, Carlos Benito, Cano-Andrade, Sergio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page
container_title Energies (Basel)
container_volume 17
creator Anaya-Reyes, Orlando
Salgado-Transito, Iván
Rodríguez-Alejandro, David Aarón
Zaleta-Aguilar, Alejandro
Martínez-Pérez, Carlos Benito
Cano-Andrade, Sergio
description This paper presents an analysis and optimization of a polygeneration power-production system that integrates a concentrating solar tower, a supercritical CO[sub.2] Brayton cycle, a double-flash geothermal Rankine cycle, and an internal combustion engine. The concentrating solar tower is analyzed under the weather conditions of the Mexicali Valley, Mexico, optimizing the incident radiation on the receiver and its size, the tower height, and the number of heliostats and their distribution. The integrated polygeneration system is studied by first and second law analyses, and its optimization is also developed. Results show that the optimal parameters for the solar field are a solar flux of 549.2 kW/m[sup.2], a height tower of 73.71 m, an external receiver of 1.86 m height with a 6.91 m diameter, and a total of 1116 heliostats of 6 m × 6 m. For the integrated polygeneration system, the optimal values of the variables considered are 1437 kPa and 351.2 kPa for the separation pressures of both flash chambers, 753 °C for the gasification temperature, 741.1 °C for the inlet temperature to the turbine, 2.5 and 1.503 for the turbine pressure ratios, 0.5964 for the air–biomass equivalence ratio, and 0.5881 for the CO[sub.2] mass flow splitting fraction. Finally, for the optimal system, the thermal efficiency is 38.8%, and the exergetic efficiency is 30.9%.
doi_str_mv 10.3390/en17205077
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A814388746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814388746</galeid><sourcerecordid>A814388746</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A8143887463</originalsourceid><addsrcrecordid>eNqVjLFOw0AQRE8IJCJIwxfsB8TmLhtydhmsAF0K0iGEFnvtHDrfRr5LYb4eC1HQZqaYp5FmlLozOkcs9T0HY5f6QVt7oWamLNeZ0RYv__G1msf4pSchGkScqbAJ5MfoIlBoYHdMrnfflJwEkBYIYlbt3uLpM1--QzXWnqGS09FzA0ngVTwNC3h00lOMi9-LZ5Z04KEnD9vAQzfCnutDEC-d43irrlryked_eaPyp-2-esk68vzhQitpoHpyw72rJXDrpn5TmBUWhV2t8ezBD2vpVtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis and Optimization of a s-CO[sub.2] Cycle Coupled to Solar, Biomass, and Geothermal Energy Technologies</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Anaya-Reyes, Orlando ; Salgado-Transito, Iván ; Rodríguez-Alejandro, David Aarón ; Zaleta-Aguilar, Alejandro ; Martínez-Pérez, Carlos Benito ; Cano-Andrade, Sergio</creator><creatorcontrib>Anaya-Reyes, Orlando ; Salgado-Transito, Iván ; Rodríguez-Alejandro, David Aarón ; Zaleta-Aguilar, Alejandro ; Martínez-Pérez, Carlos Benito ; Cano-Andrade, Sergio</creatorcontrib><description>This paper presents an analysis and optimization of a polygeneration power-production system that integrates a concentrating solar tower, a supercritical CO[sub.2] Brayton cycle, a double-flash geothermal Rankine cycle, and an internal combustion engine. The concentrating solar tower is analyzed under the weather conditions of the Mexicali Valley, Mexico, optimizing the incident radiation on the receiver and its size, the tower height, and the number of heliostats and their distribution. The integrated polygeneration system is studied by first and second law analyses, and its optimization is also developed. Results show that the optimal parameters for the solar field are a solar flux of 549.2 kW/m[sup.2], a height tower of 73.71 m, an external receiver of 1.86 m height with a 6.91 m diameter, and a total of 1116 heliostats of 6 m × 6 m. For the integrated polygeneration system, the optimal values of the variables considered are 1437 kPa and 351.2 kPa for the separation pressures of both flash chambers, 753 °C for the gasification temperature, 741.1 °C for the inlet temperature to the turbine, 2.5 and 1.503 for the turbine pressure ratios, 0.5964 for the air–biomass equivalence ratio, and 0.5881 for the CO[sub.2] mass flow splitting fraction. Finally, for the optimal system, the thermal efficiency is 38.8%, and the exergetic efficiency is 30.9%.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en17205077</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Analysis ; Combustion ; Communications equipment ; Force and energy ; Internal combustion engines ; Radiation ; Towers ; Turbines ; Weather</subject><ispartof>Energies (Basel), 2024-10, Vol.17 (20)</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Anaya-Reyes, Orlando</creatorcontrib><creatorcontrib>Salgado-Transito, Iván</creatorcontrib><creatorcontrib>Rodríguez-Alejandro, David Aarón</creatorcontrib><creatorcontrib>Zaleta-Aguilar, Alejandro</creatorcontrib><creatorcontrib>Martínez-Pérez, Carlos Benito</creatorcontrib><creatorcontrib>Cano-Andrade, Sergio</creatorcontrib><title>Analysis and Optimization of a s-CO[sub.2] Cycle Coupled to Solar, Biomass, and Geothermal Energy Technologies</title><title>Energies (Basel)</title><description>This paper presents an analysis and optimization of a polygeneration power-production system that integrates a concentrating solar tower, a supercritical CO[sub.2] Brayton cycle, a double-flash geothermal Rankine cycle, and an internal combustion engine. The concentrating solar tower is analyzed under the weather conditions of the Mexicali Valley, Mexico, optimizing the incident radiation on the receiver and its size, the tower height, and the number of heliostats and their distribution. The integrated polygeneration system is studied by first and second law analyses, and its optimization is also developed. Results show that the optimal parameters for the solar field are a solar flux of 549.2 kW/m[sup.2], a height tower of 73.71 m, an external receiver of 1.86 m height with a 6.91 m diameter, and a total of 1116 heliostats of 6 m × 6 m. For the integrated polygeneration system, the optimal values of the variables considered are 1437 kPa and 351.2 kPa for the separation pressures of both flash chambers, 753 °C for the gasification temperature, 741.1 °C for the inlet temperature to the turbine, 2.5 and 1.503 for the turbine pressure ratios, 0.5964 for the air–biomass equivalence ratio, and 0.5881 for the CO[sub.2] mass flow splitting fraction. Finally, for the optimal system, the thermal efficiency is 38.8%, and the exergetic efficiency is 30.9%.</description><subject>Analysis</subject><subject>Combustion</subject><subject>Communications equipment</subject><subject>Force and energy</subject><subject>Internal combustion engines</subject><subject>Radiation</subject><subject>Towers</subject><subject>Turbines</subject><subject>Weather</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVjLFOw0AQRE8IJCJIwxfsB8TmLhtydhmsAF0K0iGEFnvtHDrfRr5LYb4eC1HQZqaYp5FmlLozOkcs9T0HY5f6QVt7oWamLNeZ0RYv__G1msf4pSchGkScqbAJ5MfoIlBoYHdMrnfflJwEkBYIYlbt3uLpM1--QzXWnqGS09FzA0ngVTwNC3h00lOMi9-LZ5Z04KEnD9vAQzfCnutDEC-d43irrlryked_eaPyp-2-esk68vzhQitpoHpyw72rJXDrpn5TmBUWhV2t8ezBD2vpVtw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Anaya-Reyes, Orlando</creator><creator>Salgado-Transito, Iván</creator><creator>Rodríguez-Alejandro, David Aarón</creator><creator>Zaleta-Aguilar, Alejandro</creator><creator>Martínez-Pérez, Carlos Benito</creator><creator>Cano-Andrade, Sergio</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20241001</creationdate><title>Analysis and Optimization of a s-CO[sub.2] Cycle Coupled to Solar, Biomass, and Geothermal Energy Technologies</title><author>Anaya-Reyes, Orlando ; Salgado-Transito, Iván ; Rodríguez-Alejandro, David Aarón ; Zaleta-Aguilar, Alejandro ; Martínez-Pérez, Carlos Benito ; Cano-Andrade, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A8143887463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Combustion</topic><topic>Communications equipment</topic><topic>Force and energy</topic><topic>Internal combustion engines</topic><topic>Radiation</topic><topic>Towers</topic><topic>Turbines</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anaya-Reyes, Orlando</creatorcontrib><creatorcontrib>Salgado-Transito, Iván</creatorcontrib><creatorcontrib>Rodríguez-Alejandro, David Aarón</creatorcontrib><creatorcontrib>Zaleta-Aguilar, Alejandro</creatorcontrib><creatorcontrib>Martínez-Pérez, Carlos Benito</creatorcontrib><creatorcontrib>Cano-Andrade, Sergio</creatorcontrib><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anaya-Reyes, Orlando</au><au>Salgado-Transito, Iván</au><au>Rodríguez-Alejandro, David Aarón</au><au>Zaleta-Aguilar, Alejandro</au><au>Martínez-Pérez, Carlos Benito</au><au>Cano-Andrade, Sergio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and Optimization of a s-CO[sub.2] Cycle Coupled to Solar, Biomass, and Geothermal Energy Technologies</atitle><jtitle>Energies (Basel)</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>17</volume><issue>20</issue><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>This paper presents an analysis and optimization of a polygeneration power-production system that integrates a concentrating solar tower, a supercritical CO[sub.2] Brayton cycle, a double-flash geothermal Rankine cycle, and an internal combustion engine. The concentrating solar tower is analyzed under the weather conditions of the Mexicali Valley, Mexico, optimizing the incident radiation on the receiver and its size, the tower height, and the number of heliostats and their distribution. The integrated polygeneration system is studied by first and second law analyses, and its optimization is also developed. Results show that the optimal parameters for the solar field are a solar flux of 549.2 kW/m[sup.2], a height tower of 73.71 m, an external receiver of 1.86 m height with a 6.91 m diameter, and a total of 1116 heliostats of 6 m × 6 m. For the integrated polygeneration system, the optimal values of the variables considered are 1437 kPa and 351.2 kPa for the separation pressures of both flash chambers, 753 °C for the gasification temperature, 741.1 °C for the inlet temperature to the turbine, 2.5 and 1.503 for the turbine pressure ratios, 0.5964 for the air–biomass equivalence ratio, and 0.5881 for the CO[sub.2] mass flow splitting fraction. Finally, for the optimal system, the thermal efficiency is 38.8%, and the exergetic efficiency is 30.9%.</abstract><pub>MDPI AG</pub><doi>10.3390/en17205077</doi></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2024-10, Vol.17 (20)
issn 1996-1073
1996-1073
language eng
recordid cdi_gale_infotracacademiconefile_A814388746
source MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Analysis
Combustion
Communications equipment
Force and energy
Internal combustion engines
Radiation
Towers
Turbines
Weather
title Analysis and Optimization of a s-CO[sub.2] Cycle Coupled to Solar, Biomass, and Geothermal Energy Technologies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20Optimization%20of%20a%20s-CO%5Bsub.2%5D%20Cycle%20Coupled%20to%20Solar,%20Biomass,%20and%20Geothermal%20Energy%20Technologies&rft.jtitle=Energies%20(Basel)&rft.au=Anaya-Reyes,%20Orlando&rft.date=2024-10-01&rft.volume=17&rft.issue=20&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en17205077&rft_dat=%3Cgale%3EA814388746%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A814388746&rfr_iscdi=true