Development Law of Water-Conducting Fracture Zones in Overburden above Fully Mechanized Top-Coal Caving Face: A Comprehensive Study

Although it is of great significance to master the height of the water-conducting fracture zone (WCFZ) to prevent coal mine disasters and ensure safe production, the most important thing is to predict the height and range of the WCFZ ahead of the working face design before coal mining. Therefore, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2024, Vol.12 (10)
Hauptverfasser: Hu, Tao, Han, Kaiqiang, Song, Chunhua, Che, Jiancheng, Li, Bo, Huo, Taihu, Hu, Tongxu
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Processes
container_volume 12
creator Hu, Tao
Han, Kaiqiang
Song, Chunhua
Che, Jiancheng
Li, Bo
Huo, Taihu
Hu, Tongxu
description Although it is of great significance to master the height of the water-conducting fracture zone (WCFZ) to prevent coal mine disasters and ensure safe production, the most important thing is to predict the height and range of the WCFZ ahead of the working face design before coal mining. Therefore, the 150313 fully mechanized top-coal caving working face of the Yinying coal mine was taken as the engineering background. The development laws of WCFZ were studied using comprehensive research methods, including similar simulation experiments, key strata theory, the experience formula, the numerical simulation, etc. The results show that the WCFZ evolution stage is “goaf–caving zone–fracture zone” and the developing pattern is in a non-isosceles trapezoid gradually developing upward and forward. The height of the WCFZ in the 150313 working face is 89.36 m, and the fracture/mining ratio is 12.46, which is consistent with the actual production. Apparently, the set of indoor research methods in this paper is feasible to predict the height and scope of the WCFZ. The research results can provide a scientific reference for safe mining of the 15[sup.#] coal seam in Shanxi Province and the prevention and control of roof water hazards.
doi_str_mv 10.3390/pr12102076
format Report
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A814375666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814375666</galeid><sourcerecordid>A814375666</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A8143756663</originalsourceid><addsrcrecordid>eNqVTsFKAzEUDKJg0V78gvcDW5ONTbreyurioeLBguBF0s3bNpJNliS7Uq_-uEE8eHXmMMPADEPIFaMLzit6PQRWMlpSKU7IrCxLWVSSydM__pzMY3ynGRXjq6WYka87nND6oUeXYKM-wHfwohKGovZOj20ybg9NUG0aA8KrdxjBOHiaMOzGoNGB2vkJoRmtPcIjtgflzCdq2PohTygLtZp-NlSLt7CG2vdDwAO6aHLtOY36eEnOOmUjzn_1giya-239UOyVxTfjOp_ygUyNvWnzhc7kfL1iN1wuhRD834VvIMxfRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Development Law of Water-Conducting Fracture Zones in Overburden above Fully Mechanized Top-Coal Caving Face: A Comprehensive Study</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hu, Tao ; Han, Kaiqiang ; Song, Chunhua ; Che, Jiancheng ; Li, Bo ; Huo, Taihu ; Hu, Tongxu</creator><creatorcontrib>Hu, Tao ; Han, Kaiqiang ; Song, Chunhua ; Che, Jiancheng ; Li, Bo ; Huo, Taihu ; Hu, Tongxu</creatorcontrib><description>Although it is of great significance to master the height of the water-conducting fracture zone (WCFZ) to prevent coal mine disasters and ensure safe production, the most important thing is to predict the height and range of the WCFZ ahead of the working face design before coal mining. Therefore, the 150313 fully mechanized top-coal caving working face of the Yinying coal mine was taken as the engineering background. The development laws of WCFZ were studied using comprehensive research methods, including similar simulation experiments, key strata theory, the experience formula, the numerical simulation, etc. The results show that the WCFZ evolution stage is “goaf–caving zone–fracture zone” and the developing pattern is in a non-isosceles trapezoid gradually developing upward and forward. The height of the WCFZ in the 150313 working face is 89.36 m, and the fracture/mining ratio is 12.46, which is consistent with the actual production. Apparently, the set of indoor research methods in this paper is feasible to predict the height and scope of the WCFZ. The research results can provide a scientific reference for safe mining of the 15[sup.#] coal seam in Shanxi Province and the prevention and control of roof water hazards.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr12102076</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Caving ; Coal industry ; Mine accidents ; Mineral industry ; Mining industry ; Numerical analysis ; Occupational health and safety ; Simulation methods</subject><ispartof>Processes, 2024, Vol.12 (10)</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,4476,27902</link.rule.ids></links><search><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Han, Kaiqiang</creatorcontrib><creatorcontrib>Song, Chunhua</creatorcontrib><creatorcontrib>Che, Jiancheng</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Huo, Taihu</creatorcontrib><creatorcontrib>Hu, Tongxu</creatorcontrib><title>Development Law of Water-Conducting Fracture Zones in Overburden above Fully Mechanized Top-Coal Caving Face: A Comprehensive Study</title><title>Processes</title><description>Although it is of great significance to master the height of the water-conducting fracture zone (WCFZ) to prevent coal mine disasters and ensure safe production, the most important thing is to predict the height and range of the WCFZ ahead of the working face design before coal mining. Therefore, the 150313 fully mechanized top-coal caving working face of the Yinying coal mine was taken as the engineering background. The development laws of WCFZ were studied using comprehensive research methods, including similar simulation experiments, key strata theory, the experience formula, the numerical simulation, etc. The results show that the WCFZ evolution stage is “goaf–caving zone–fracture zone” and the developing pattern is in a non-isosceles trapezoid gradually developing upward and forward. The height of the WCFZ in the 150313 working face is 89.36 m, and the fracture/mining ratio is 12.46, which is consistent with the actual production. Apparently, the set of indoor research methods in this paper is feasible to predict the height and scope of the WCFZ. The research results can provide a scientific reference for safe mining of the 15[sup.#] coal seam in Shanxi Province and the prevention and control of roof water hazards.</description><subject>Caving</subject><subject>Coal industry</subject><subject>Mine accidents</subject><subject>Mineral industry</subject><subject>Mining industry</subject><subject>Numerical analysis</subject><subject>Occupational health and safety</subject><subject>Simulation methods</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2024</creationdate><recordtype>report</recordtype><sourceid/><recordid>eNqVTsFKAzEUDKJg0V78gvcDW5ONTbreyurioeLBguBF0s3bNpJNliS7Uq_-uEE8eHXmMMPADEPIFaMLzit6PQRWMlpSKU7IrCxLWVSSydM__pzMY3ynGRXjq6WYka87nND6oUeXYKM-wHfwohKGovZOj20ybg9NUG0aA8KrdxjBOHiaMOzGoNGB2vkJoRmtPcIjtgflzCdq2PohTygLtZp-NlSLt7CG2vdDwAO6aHLtOY36eEnOOmUjzn_1giya-239UOyVxTfjOp_ygUyNvWnzhc7kfL1iN1wuhRD834VvIMxfRg</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Hu, Tao</creator><creator>Han, Kaiqiang</creator><creator>Song, Chunhua</creator><creator>Che, Jiancheng</creator><creator>Li, Bo</creator><creator>Huo, Taihu</creator><creator>Hu, Tongxu</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20241001</creationdate><title>Development Law of Water-Conducting Fracture Zones in Overburden above Fully Mechanized Top-Coal Caving Face: A Comprehensive Study</title><author>Hu, Tao ; Han, Kaiqiang ; Song, Chunhua ; Che, Jiancheng ; Li, Bo ; Huo, Taihu ; Hu, Tongxu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A8143756663</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Caving</topic><topic>Coal industry</topic><topic>Mine accidents</topic><topic>Mineral industry</topic><topic>Mining industry</topic><topic>Numerical analysis</topic><topic>Occupational health and safety</topic><topic>Simulation methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Han, Kaiqiang</creatorcontrib><creatorcontrib>Song, Chunhua</creatorcontrib><creatorcontrib>Che, Jiancheng</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Huo, Taihu</creatorcontrib><creatorcontrib>Hu, Tongxu</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Tao</au><au>Han, Kaiqiang</au><au>Song, Chunhua</au><au>Che, Jiancheng</au><au>Li, Bo</au><au>Huo, Taihu</au><au>Hu, Tongxu</au><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><atitle>Development Law of Water-Conducting Fracture Zones in Overburden above Fully Mechanized Top-Coal Caving Face: A Comprehensive Study</atitle><jtitle>Processes</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>12</volume><issue>10</issue><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Although it is of great significance to master the height of the water-conducting fracture zone (WCFZ) to prevent coal mine disasters and ensure safe production, the most important thing is to predict the height and range of the WCFZ ahead of the working face design before coal mining. Therefore, the 150313 fully mechanized top-coal caving working face of the Yinying coal mine was taken as the engineering background. The development laws of WCFZ were studied using comprehensive research methods, including similar simulation experiments, key strata theory, the experience formula, the numerical simulation, etc. The results show that the WCFZ evolution stage is “goaf–caving zone–fracture zone” and the developing pattern is in a non-isosceles trapezoid gradually developing upward and forward. The height of the WCFZ in the 150313 working face is 89.36 m, and the fracture/mining ratio is 12.46, which is consistent with the actual production. Apparently, the set of indoor research methods in this paper is feasible to predict the height and scope of the WCFZ. The research results can provide a scientific reference for safe mining of the 15[sup.#] coal seam in Shanxi Province and the prevention and control of roof water hazards.</abstract><pub>MDPI AG</pub><doi>10.3390/pr12102076</doi></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2024, Vol.12 (10)
issn 2227-9717
2227-9717
language eng
recordid cdi_gale_infotracacademiconefile_A814375666
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Caving
Coal industry
Mine accidents
Mineral industry
Mining industry
Numerical analysis
Occupational health and safety
Simulation methods
title Development Law of Water-Conducting Fracture Zones in Overburden above Fully Mechanized Top-Coal Caving Face: A Comprehensive Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A50%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.atitle=Development%20Law%20of%20Water-Conducting%20Fracture%20Zones%20in%20Overburden%20above%20Fully%20Mechanized%20Top-Coal%20Caving%20Face:%20A%20Comprehensive%20Study&rft.jtitle=Processes&rft.au=Hu,%20Tao&rft.date=2024-10-01&rft.volume=12&rft.issue=10&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr12102076&rft_dat=%3Cgale%3EA814375666%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A814375666&rfr_iscdi=true