Modelling Mechanically Induced Non-Newtonian Flows to Improve the Energy Efficiency of Anaerobic Digesters
In this paper, a finite volume based computational fluid dynamics (CFD) model has been developed for investigating the mixing of non-Newtonian flows and operating conditions of an anaerobic digester. A CFD model using the multiple reference frame has been implemented in order to model the mixing in...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2020-11, Vol.12 (11), p.2995 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a finite volume based computational fluid dynamics (CFD) model has been developed for investigating the mixing of non-Newtonian flows and operating conditions of an anaerobic digester. A CFD model using the multiple reference frame has been implemented in order to model the mixing in an anaerobic digester. Two different agitator designs have been implemented: a design currently used in a full-scale anaerobic mixing device, SCABA, and an alternative helical ribbon design. Lab-scale experiments have been conducted with these two mixing device designs using a water-glycerol mixture to replicate a slurry with total solids concentration of 7.5%, which have been used to validate the CFD model. The CFD model has then been scaled up in order to replicate a full-scale anaerobic digester under real operating parameters that is mechanically stirred with the SCABA design. The influence of the non-Newtonian behaviour has been investigated and found to be important for the power demand calculation. Furthermore, the other helical mixing device has been implemented at full scale and a case study comparing the two agitators has been performed; assessing the mixing capabilities and power consumption of the two designs. It was found that, for a total solids concentrations of 7.5%, the helical design could produce similar mixing capabilities as the SCABA design at a lower power consumption. Finally, the potential power savings of the more energy efficient helical design has been estimated if implemented across the whole of the United Kingdom (UK)/Austria. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w12112995 |