Electronic Structure of Mg-, Si-, and Zn-Doped SnO[sub.2] Nanowires: Predictions from First Principles
We investigated the electronic structure of Mg-, Si-, and Zn-doped four-faceted [001]- and [110]-oriented SnO[sub.2] nanowires using first-principles calculations based on the linear combination of atomic orbitals (LCAO) method. This approach, employing atomic-centered Gaussian-type functions as a b...
Gespeichert in:
Veröffentlicht in: | Materials 2024-05, Vol.17 (10) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Materials |
container_volume | 17 |
creator | Platonenko, Alexander Piskunov, Sergei Yang, Thomas C.-K Juodkazyte, Jurga Isakoviča, Inta Popov, Anatoli I Junisbekova, Diana Baimukhanov, Zein Dauletbekova, Alma |
description | We investigated the electronic structure of Mg-, Si-, and Zn-doped four-faceted [001]- and [110]-oriented SnO[sub.2] nanowires using first-principles calculations based on the linear combination of atomic orbitals (LCAO) method. This approach, employing atomic-centered Gaussian-type functions as a basis set, was combined with hybrid density functional theory (DFT). Our results show qualitative agreement in predicting the formation of stable point defects due to atom substitutions on the surface of the SnO[sub.2] nanowire. Doping induces substantial atomic relaxation in the nanowires, changes in the covalency of the dopant–oxygen bond, and additional charge redistribution between the dopant and nanowire. Furthermore, our calculations reveal a narrowing of the band gap resulting from the emergence of midgap states induced by the incorporated defects. This study provides insights into the altered electronic properties caused by Mg, Si, and Zn doping, contributing to the further design of SnO[sub.2] nanowires for advanced electronic, optoelectronic, photovoltaic, and photocatalytic applications. |
doi_str_mv | 10.3390/ma17102193 |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A795446016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A795446016</galeid><sourcerecordid>A795446016</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A7954460163</originalsourceid><addsrcrecordid>eNqVi0FLxDAUhIMouOhe_AXvB9iaNLVrvInu4kVd6J4UkZi-LE_alyVJ8e-bgwevzsDM8MEIcaFkrbWRV5NVKyUbZfSRWChjukqZtj3-s0_FMqUvWaS1umnMQvj1iC7HwOSgz3F2eY4IwcPTvrqEnkpYHuCVq4dwwAF6fnlL82fdvMOz5fBNEdMtbCMO5DIFTuBjmGBDMeWCiR0dRkzn4sTbMeHyt89EvVnv7h-rvR3xg9iHHK0rHnAiFxg9FX63Mtdt20nV6X8ffgBQxVOc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electronic Structure of Mg-, Si-, and Zn-Doped SnO[sub.2] Nanowires: Predictions from First Principles</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Platonenko, Alexander ; Piskunov, Sergei ; Yang, Thomas C.-K ; Juodkazyte, Jurga ; Isakoviča, Inta ; Popov, Anatoli I ; Junisbekova, Diana ; Baimukhanov, Zein ; Dauletbekova, Alma</creator><creatorcontrib>Platonenko, Alexander ; Piskunov, Sergei ; Yang, Thomas C.-K ; Juodkazyte, Jurga ; Isakoviča, Inta ; Popov, Anatoli I ; Junisbekova, Diana ; Baimukhanov, Zein ; Dauletbekova, Alma</creatorcontrib><description>We investigated the electronic structure of Mg-, Si-, and Zn-doped four-faceted [001]- and [110]-oriented SnO[sub.2] nanowires using first-principles calculations based on the linear combination of atomic orbitals (LCAO) method. This approach, employing atomic-centered Gaussian-type functions as a basis set, was combined with hybrid density functional theory (DFT). Our results show qualitative agreement in predicting the formation of stable point defects due to atom substitutions on the surface of the SnO[sub.2] nanowire. Doping induces substantial atomic relaxation in the nanowires, changes in the covalency of the dopant–oxygen bond, and additional charge redistribution between the dopant and nanowire. Furthermore, our calculations reveal a narrowing of the band gap resulting from the emergence of midgap states induced by the incorporated defects. This study provides insights into the altered electronic properties caused by Mg, Si, and Zn doping, contributing to the further design of SnO[sub.2] nanowires for advanced electronic, optoelectronic, photovoltaic, and photocatalytic applications.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17102193</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Density functionals ; Zinc compounds</subject><ispartof>Materials, 2024-05, Vol.17 (10)</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Platonenko, Alexander</creatorcontrib><creatorcontrib>Piskunov, Sergei</creatorcontrib><creatorcontrib>Yang, Thomas C.-K</creatorcontrib><creatorcontrib>Juodkazyte, Jurga</creatorcontrib><creatorcontrib>Isakoviča, Inta</creatorcontrib><creatorcontrib>Popov, Anatoli I</creatorcontrib><creatorcontrib>Junisbekova, Diana</creatorcontrib><creatorcontrib>Baimukhanov, Zein</creatorcontrib><creatorcontrib>Dauletbekova, Alma</creatorcontrib><title>Electronic Structure of Mg-, Si-, and Zn-Doped SnO[sub.2] Nanowires: Predictions from First Principles</title><title>Materials</title><description>We investigated the electronic structure of Mg-, Si-, and Zn-doped four-faceted [001]- and [110]-oriented SnO[sub.2] nanowires using first-principles calculations based on the linear combination of atomic orbitals (LCAO) method. This approach, employing atomic-centered Gaussian-type functions as a basis set, was combined with hybrid density functional theory (DFT). Our results show qualitative agreement in predicting the formation of stable point defects due to atom substitutions on the surface of the SnO[sub.2] nanowire. Doping induces substantial atomic relaxation in the nanowires, changes in the covalency of the dopant–oxygen bond, and additional charge redistribution between the dopant and nanowire. Furthermore, our calculations reveal a narrowing of the band gap resulting from the emergence of midgap states induced by the incorporated defects. This study provides insights into the altered electronic properties caused by Mg, Si, and Zn doping, contributing to the further design of SnO[sub.2] nanowires for advanced electronic, optoelectronic, photovoltaic, and photocatalytic applications.</description><subject>Density functionals</subject><subject>Zinc compounds</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVi0FLxDAUhIMouOhe_AXvB9iaNLVrvInu4kVd6J4UkZi-LE_alyVJ8e-bgwevzsDM8MEIcaFkrbWRV5NVKyUbZfSRWChjukqZtj3-s0_FMqUvWaS1umnMQvj1iC7HwOSgz3F2eY4IwcPTvrqEnkpYHuCVq4dwwAF6fnlL82fdvMOz5fBNEdMtbCMO5DIFTuBjmGBDMeWCiR0dRkzn4sTbMeHyt89EvVnv7h-rvR3xg9iHHK0rHnAiFxg9FX63Mtdt20nV6X8ffgBQxVOc</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Platonenko, Alexander</creator><creator>Piskunov, Sergei</creator><creator>Yang, Thomas C.-K</creator><creator>Juodkazyte, Jurga</creator><creator>Isakoviča, Inta</creator><creator>Popov, Anatoli I</creator><creator>Junisbekova, Diana</creator><creator>Baimukhanov, Zein</creator><creator>Dauletbekova, Alma</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20240501</creationdate><title>Electronic Structure of Mg-, Si-, and Zn-Doped SnO[sub.2] Nanowires: Predictions from First Principles</title><author>Platonenko, Alexander ; Piskunov, Sergei ; Yang, Thomas C.-K ; Juodkazyte, Jurga ; Isakoviča, Inta ; Popov, Anatoli I ; Junisbekova, Diana ; Baimukhanov, Zein ; Dauletbekova, Alma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A7954460163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Density functionals</topic><topic>Zinc compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Platonenko, Alexander</creatorcontrib><creatorcontrib>Piskunov, Sergei</creatorcontrib><creatorcontrib>Yang, Thomas C.-K</creatorcontrib><creatorcontrib>Juodkazyte, Jurga</creatorcontrib><creatorcontrib>Isakoviča, Inta</creatorcontrib><creatorcontrib>Popov, Anatoli I</creatorcontrib><creatorcontrib>Junisbekova, Diana</creatorcontrib><creatorcontrib>Baimukhanov, Zein</creatorcontrib><creatorcontrib>Dauletbekova, Alma</creatorcontrib><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Platonenko, Alexander</au><au>Piskunov, Sergei</au><au>Yang, Thomas C.-K</au><au>Juodkazyte, Jurga</au><au>Isakoviča, Inta</au><au>Popov, Anatoli I</au><au>Junisbekova, Diana</au><au>Baimukhanov, Zein</au><au>Dauletbekova, Alma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Structure of Mg-, Si-, and Zn-Doped SnO[sub.2] Nanowires: Predictions from First Principles</atitle><jtitle>Materials</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>17</volume><issue>10</issue><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>We investigated the electronic structure of Mg-, Si-, and Zn-doped four-faceted [001]- and [110]-oriented SnO[sub.2] nanowires using first-principles calculations based on the linear combination of atomic orbitals (LCAO) method. This approach, employing atomic-centered Gaussian-type functions as a basis set, was combined with hybrid density functional theory (DFT). Our results show qualitative agreement in predicting the formation of stable point defects due to atom substitutions on the surface of the SnO[sub.2] nanowire. Doping induces substantial atomic relaxation in the nanowires, changes in the covalency of the dopant–oxygen bond, and additional charge redistribution between the dopant and nanowire. Furthermore, our calculations reveal a narrowing of the band gap resulting from the emergence of midgap states induced by the incorporated defects. This study provides insights into the altered electronic properties caused by Mg, Si, and Zn doping, contributing to the further design of SnO[sub.2] nanowires for advanced electronic, optoelectronic, photovoltaic, and photocatalytic applications.</abstract><pub>MDPI AG</pub><doi>10.3390/ma17102193</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-05, Vol.17 (10) |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A795446016 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Density functionals Zinc compounds |
title | Electronic Structure of Mg-, Si-, and Zn-Doped SnO[sub.2] Nanowires: Predictions from First Principles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Structure%20of%20Mg-,%20Si-,%20and%20Zn-Doped%20SnO%5Bsub.2%5D%20Nanowires:%20Predictions%20from%20First%20Principles&rft.jtitle=Materials&rft.au=Platonenko,%20Alexander&rft.date=2024-05-01&rft.volume=17&rft.issue=10&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17102193&rft_dat=%3Cgale%3EA795446016%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A795446016&rfr_iscdi=true |