Hydrological/Hydraulic Modeling-Based Thresholding of Multi SAR Remote Sensing Data for Flood Monitoring in Regions of the Vietnamese Lower Mekong River Basin
Synthetic Aperture Radar (SAR) remote sensing data can be used as an effective alternative to detect surface water and provide useful information regarding operational flood monitoring, in particular for the improvement of rapid flood assessments. However, this application frequently requires standa...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2020-01, Vol.12 (1), p.71, Article 71 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 71 |
container_title | Water (Basel) |
container_volume | 12 |
creator | Quang, Nguyen Hong Tuan, Vu Anh Hang, Le Thi Thu Hung, Nguyen Manh The, Doan Thi Dieu, Dinh Thi Anh, Ngo Duc Hackney, Christopher R. |
description | Synthetic Aperture Radar (SAR) remote sensing data can be used as an effective alternative to detect surface water and provide useful information regarding operational flood monitoring, in particular for the improvement of rapid flood assessments. However, this application frequently requires standard and simple, yet robust, algorithms. Although thresholding approaches meet these requirements, limitations such as data inequality over large spatial regions and challenges in estimating optimal threshold values remain. Here, we propose a new method for SAR water extraction named Hammock Swing Thresholding (HST). We applied this HST approach to four SAR remote sensing datasets, namely, Sentinel-1, ALOS-2, TerraSAR-X, and RadarSAT-2 for flood inundation mapping for a case study focusing on the Tam Nong district in the Vietnam Mekong delta. A 2D calibrated Hydrologic Engineering Centers River Analysis System (HEC-RAS) model was coupled with the HST outputs in order to estimate the optimal thresholds (OTs) where the SAR-based water masks fitted best with HEC-RAS's inundation patterns. Our results showed that water levels extracted from Sentinel-1 data best agreed with the HEC-RAS water extent (88.3%), following by ALOS-2 (85.9%), TerraSAR-X (77.2%). and RadarSAT-2 (72%) at OTs of -15, 68, 21, and 35 decibel (dB), respectively. Generated flood maps indicated changes in the flood extent of the flooding seasons from 2010 and 2014-2016 with variations in spatial extent appearing greater in the TerraSAR-X and RadarSAT-2 higher resolution maps. We recommend the use of OTs in applications of flood monitoring using SAR remote sensing data, such as for an open data cube (ODC). |
doi_str_mv | 10.3390/w12010071 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A791294099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A791294099</galeid><sourcerecordid>A791294099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-551687a8405232be1ab4cc0f61d61a5bf660a21752974e52a00cc406a1e0582c3</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhlcIJKrSA__AEieEth177f04hkApUiKktHBdOd7ZxMXxFNtL1D_Db8WrVBVH7IPn45l3JL9F8ZbDZVV1cHXkAjhAw18UZwKaqpRS8pf_xK-LixjvIR_Zta2Cs-LPzeMQyNHOGu2u5kRPzhq2pgGd9bvyo444sLt9wLgnN-QSo5GtJ5csu11s2AYPlJDdoo9z75NOmo0U2LUjGrKMt4nC3LE-sztLPs4CaY_sh8Xk9QEjshUdMbA1_qRMbuzvnOTF1r8pXo3aRbx4es-L79ef75Y35erbl6_Lxao0VcVTqRSv20a3EpSoxBa53kpjYKz5UHOttmNdgxa8UaJrJCqhAYyRUGuOoFphqvPi3Un3IdCvCWPq72kKPq_shVKgoG5FnanLE7XTDnvrR0pBm3wHPFhDHkeb64um46KT0HV54P1pwASKMeDYPwR70OGx59DPlvXPlmX2w4k94pbGaCx6g898tkzxrpWNgCe6_X96aZNO-eeXNPlU_QWvfKjS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550506826</pqid></control><display><type>article</type><title>Hydrological/Hydraulic Modeling-Based Thresholding of Multi SAR Remote Sensing Data for Flood Monitoring in Regions of the Vietnamese Lower Mekong River Basin</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Quang, Nguyen Hong ; Tuan, Vu Anh ; Hang, Le Thi Thu ; Hung, Nguyen Manh ; The, Doan Thi ; Dieu, Dinh Thi ; Anh, Ngo Duc ; Hackney, Christopher R.</creator><creatorcontrib>Quang, Nguyen Hong ; Tuan, Vu Anh ; Hang, Le Thi Thu ; Hung, Nguyen Manh ; The, Doan Thi ; Dieu, Dinh Thi ; Anh, Ngo Duc ; Hackney, Christopher R.</creatorcontrib><description>Synthetic Aperture Radar (SAR) remote sensing data can be used as an effective alternative to detect surface water and provide useful information regarding operational flood monitoring, in particular for the improvement of rapid flood assessments. However, this application frequently requires standard and simple, yet robust, algorithms. Although thresholding approaches meet these requirements, limitations such as data inequality over large spatial regions and challenges in estimating optimal threshold values remain. Here, we propose a new method for SAR water extraction named Hammock Swing Thresholding (HST). We applied this HST approach to four SAR remote sensing datasets, namely, Sentinel-1, ALOS-2, TerraSAR-X, and RadarSAT-2 for flood inundation mapping for a case study focusing on the Tam Nong district in the Vietnam Mekong delta. A 2D calibrated Hydrologic Engineering Centers River Analysis System (HEC-RAS) model was coupled with the HST outputs in order to estimate the optimal thresholds (OTs) where the SAR-based water masks fitted best with HEC-RAS's inundation patterns. Our results showed that water levels extracted from Sentinel-1 data best agreed with the HEC-RAS water extent (88.3%), following by ALOS-2 (85.9%), TerraSAR-X (77.2%). and RadarSAT-2 (72%) at OTs of -15, 68, 21, and 35 decibel (dB), respectively. Generated flood maps indicated changes in the flood extent of the flooding seasons from 2010 and 2014-2016 with variations in spatial extent appearing greater in the TerraSAR-X and RadarSAT-2 higher resolution maps. We recommend the use of OTs in applications of flood monitoring using SAR remote sensing data, such as for an open data cube (ODC).</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w12010071</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Aquatic resources ; Artificial satellites in remote sensing ; Case studies ; Dams ; Decibels ; Environmental Sciences ; Environmental Sciences & Ecology ; Flood mapping ; Flooding ; Floods ; Hydraulics ; Hydrologic data ; Hydrology ; Life Sciences & Biomedicine ; Physical Sciences ; Radarsat ; Remote monitoring ; Remote sensing ; River basins ; Rivers ; Science & Technology ; Seasons ; Sediments ; Surface water ; Synthetic aperture radar ; Two dimensional analysis ; Two dimensional models ; Vegetation ; Vietnam ; Water levels ; Water Resources</subject><ispartof>Water (Basel), 2020-01, Vol.12 (1), p.71, Article 71</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000519847200071</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c331t-551687a8405232be1ab4cc0f61d61a5bf660a21752974e52a00cc406a1e0582c3</citedby><cites>FETCH-LOGICAL-c331t-551687a8405232be1ab4cc0f61d61a5bf660a21752974e52a00cc406a1e0582c3</cites><orcidid>0000-0001-5390-9136 ; 0000-0001-7657-624X ; 0000-0003-1627-6813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929,28252</link.rule.ids></links><search><creatorcontrib>Quang, Nguyen Hong</creatorcontrib><creatorcontrib>Tuan, Vu Anh</creatorcontrib><creatorcontrib>Hang, Le Thi Thu</creatorcontrib><creatorcontrib>Hung, Nguyen Manh</creatorcontrib><creatorcontrib>The, Doan Thi</creatorcontrib><creatorcontrib>Dieu, Dinh Thi</creatorcontrib><creatorcontrib>Anh, Ngo Duc</creatorcontrib><creatorcontrib>Hackney, Christopher R.</creatorcontrib><title>Hydrological/Hydraulic Modeling-Based Thresholding of Multi SAR Remote Sensing Data for Flood Monitoring in Regions of the Vietnamese Lower Mekong River Basin</title><title>Water (Basel)</title><addtitle>WATER-SUI</addtitle><description>Synthetic Aperture Radar (SAR) remote sensing data can be used as an effective alternative to detect surface water and provide useful information regarding operational flood monitoring, in particular for the improvement of rapid flood assessments. However, this application frequently requires standard and simple, yet robust, algorithms. Although thresholding approaches meet these requirements, limitations such as data inequality over large spatial regions and challenges in estimating optimal threshold values remain. Here, we propose a new method for SAR water extraction named Hammock Swing Thresholding (HST). We applied this HST approach to four SAR remote sensing datasets, namely, Sentinel-1, ALOS-2, TerraSAR-X, and RadarSAT-2 for flood inundation mapping for a case study focusing on the Tam Nong district in the Vietnam Mekong delta. A 2D calibrated Hydrologic Engineering Centers River Analysis System (HEC-RAS) model was coupled with the HST outputs in order to estimate the optimal thresholds (OTs) where the SAR-based water masks fitted best with HEC-RAS's inundation patterns. Our results showed that water levels extracted from Sentinel-1 data best agreed with the HEC-RAS water extent (88.3%), following by ALOS-2 (85.9%), TerraSAR-X (77.2%). and RadarSAT-2 (72%) at OTs of -15, 68, 21, and 35 decibel (dB), respectively. Generated flood maps indicated changes in the flood extent of the flooding seasons from 2010 and 2014-2016 with variations in spatial extent appearing greater in the TerraSAR-X and RadarSAT-2 higher resolution maps. We recommend the use of OTs in applications of flood monitoring using SAR remote sensing data, such as for an open data cube (ODC).</description><subject>Aquatic resources</subject><subject>Artificial satellites in remote sensing</subject><subject>Case studies</subject><subject>Dams</subject><subject>Decibels</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences & Ecology</subject><subject>Flood mapping</subject><subject>Flooding</subject><subject>Floods</subject><subject>Hydraulics</subject><subject>Hydrologic data</subject><subject>Hydrology</subject><subject>Life Sciences & Biomedicine</subject><subject>Physical Sciences</subject><subject>Radarsat</subject><subject>Remote monitoring</subject><subject>Remote sensing</subject><subject>River basins</subject><subject>Rivers</subject><subject>Science & Technology</subject><subject>Seasons</subject><subject>Sediments</subject><subject>Surface water</subject><subject>Synthetic aperture radar</subject><subject>Two dimensional analysis</subject><subject>Two dimensional models</subject><subject>Vegetation</subject><subject>Vietnam</subject><subject>Water levels</subject><subject>Water Resources</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkU1vEzEQhlcIJKrSA__AEieEth177f04hkApUiKktHBdOd7ZxMXxFNtL1D_Db8WrVBVH7IPn45l3JL9F8ZbDZVV1cHXkAjhAw18UZwKaqpRS8pf_xK-LixjvIR_Zta2Cs-LPzeMQyNHOGu2u5kRPzhq2pgGd9bvyo444sLt9wLgnN-QSo5GtJ5csu11s2AYPlJDdoo9z75NOmo0U2LUjGrKMt4nC3LE-sztLPs4CaY_sh8Xk9QEjshUdMbA1_qRMbuzvnOTF1r8pXo3aRbx4es-L79ef75Y35erbl6_Lxao0VcVTqRSv20a3EpSoxBa53kpjYKz5UHOttmNdgxa8UaJrJCqhAYyRUGuOoFphqvPi3Un3IdCvCWPq72kKPq_shVKgoG5FnanLE7XTDnvrR0pBm3wHPFhDHkeb64um46KT0HV54P1pwASKMeDYPwR70OGx59DPlvXPlmX2w4k94pbGaCx6g898tkzxrpWNgCe6_X96aZNO-eeXNPlU_QWvfKjS</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Quang, Nguyen Hong</creator><creator>Tuan, Vu Anh</creator><creator>Hang, Le Thi Thu</creator><creator>Hung, Nguyen Manh</creator><creator>The, Doan Thi</creator><creator>Dieu, Dinh Thi</creator><creator>Anh, Ngo Duc</creator><creator>Hackney, Christopher R.</creator><general>Mdpi</general><general>MDPI AG</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5390-9136</orcidid><orcidid>https://orcid.org/0000-0001-7657-624X</orcidid><orcidid>https://orcid.org/0000-0003-1627-6813</orcidid></search><sort><creationdate>20200101</creationdate><title>Hydrological/Hydraulic Modeling-Based Thresholding of Multi SAR Remote Sensing Data for Flood Monitoring in Regions of the Vietnamese Lower Mekong River Basin</title><author>Quang, Nguyen Hong ; Tuan, Vu Anh ; Hang, Le Thi Thu ; Hung, Nguyen Manh ; The, Doan Thi ; Dieu, Dinh Thi ; Anh, Ngo Duc ; Hackney, Christopher R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-551687a8405232be1ab4cc0f61d61a5bf660a21752974e52a00cc406a1e0582c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aquatic resources</topic><topic>Artificial satellites in remote sensing</topic><topic>Case studies</topic><topic>Dams</topic><topic>Decibels</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences & Ecology</topic><topic>Flood mapping</topic><topic>Flooding</topic><topic>Floods</topic><topic>Hydraulics</topic><topic>Hydrologic data</topic><topic>Hydrology</topic><topic>Life Sciences & Biomedicine</topic><topic>Physical Sciences</topic><topic>Radarsat</topic><topic>Remote monitoring</topic><topic>Remote sensing</topic><topic>River basins</topic><topic>Rivers</topic><topic>Science & Technology</topic><topic>Seasons</topic><topic>Sediments</topic><topic>Surface water</topic><topic>Synthetic aperture radar</topic><topic>Two dimensional analysis</topic><topic>Two dimensional models</topic><topic>Vegetation</topic><topic>Vietnam</topic><topic>Water levels</topic><topic>Water Resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quang, Nguyen Hong</creatorcontrib><creatorcontrib>Tuan, Vu Anh</creatorcontrib><creatorcontrib>Hang, Le Thi Thu</creatorcontrib><creatorcontrib>Hung, Nguyen Manh</creatorcontrib><creatorcontrib>The, Doan Thi</creatorcontrib><creatorcontrib>Dieu, Dinh Thi</creatorcontrib><creatorcontrib>Anh, Ngo Duc</creatorcontrib><creatorcontrib>Hackney, Christopher R.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quang, Nguyen Hong</au><au>Tuan, Vu Anh</au><au>Hang, Le Thi Thu</au><au>Hung, Nguyen Manh</au><au>The, Doan Thi</au><au>Dieu, Dinh Thi</au><au>Anh, Ngo Duc</au><au>Hackney, Christopher R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrological/Hydraulic Modeling-Based Thresholding of Multi SAR Remote Sensing Data for Flood Monitoring in Regions of the Vietnamese Lower Mekong River Basin</atitle><jtitle>Water (Basel)</jtitle><stitle>WATER-SUI</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>12</volume><issue>1</issue><spage>71</spage><pages>71-</pages><artnum>71</artnum><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Synthetic Aperture Radar (SAR) remote sensing data can be used as an effective alternative to detect surface water and provide useful information regarding operational flood monitoring, in particular for the improvement of rapid flood assessments. However, this application frequently requires standard and simple, yet robust, algorithms. Although thresholding approaches meet these requirements, limitations such as data inequality over large spatial regions and challenges in estimating optimal threshold values remain. Here, we propose a new method for SAR water extraction named Hammock Swing Thresholding (HST). We applied this HST approach to four SAR remote sensing datasets, namely, Sentinel-1, ALOS-2, TerraSAR-X, and RadarSAT-2 for flood inundation mapping for a case study focusing on the Tam Nong district in the Vietnam Mekong delta. A 2D calibrated Hydrologic Engineering Centers River Analysis System (HEC-RAS) model was coupled with the HST outputs in order to estimate the optimal thresholds (OTs) where the SAR-based water masks fitted best with HEC-RAS's inundation patterns. Our results showed that water levels extracted from Sentinel-1 data best agreed with the HEC-RAS water extent (88.3%), following by ALOS-2 (85.9%), TerraSAR-X (77.2%). and RadarSAT-2 (72%) at OTs of -15, 68, 21, and 35 decibel (dB), respectively. Generated flood maps indicated changes in the flood extent of the flooding seasons from 2010 and 2014-2016 with variations in spatial extent appearing greater in the TerraSAR-X and RadarSAT-2 higher resolution maps. We recommend the use of OTs in applications of flood monitoring using SAR remote sensing data, such as for an open data cube (ODC).</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/w12010071</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5390-9136</orcidid><orcidid>https://orcid.org/0000-0001-7657-624X</orcidid><orcidid>https://orcid.org/0000-0003-1627-6813</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2020-01, Vol.12 (1), p.71, Article 71 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A791294099 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Aquatic resources Artificial satellites in remote sensing Case studies Dams Decibels Environmental Sciences Environmental Sciences & Ecology Flood mapping Flooding Floods Hydraulics Hydrologic data Hydrology Life Sciences & Biomedicine Physical Sciences Radarsat Remote monitoring Remote sensing River basins Rivers Science & Technology Seasons Sediments Surface water Synthetic aperture radar Two dimensional analysis Two dimensional models Vegetation Vietnam Water levels Water Resources |
title | Hydrological/Hydraulic Modeling-Based Thresholding of Multi SAR Remote Sensing Data for Flood Monitoring in Regions of the Vietnamese Lower Mekong River Basin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T17%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrological/Hydraulic%20Modeling-Based%20Thresholding%20of%20Multi%20SAR%20Remote%20Sensing%20Data%20for%20Flood%20Monitoring%20in%20Regions%20of%20the%20Vietnamese%20Lower%20Mekong%20River%20Basin&rft.jtitle=Water%20(Basel)&rft.au=Quang,%20Nguyen%20Hong&rft.date=2020-01-01&rft.volume=12&rft.issue=1&rft.spage=71&rft.pages=71-&rft.artnum=71&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w12010071&rft_dat=%3Cgale_cross%3EA791294099%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550506826&rft_id=info:pmid/&rft_galeid=A791294099&rfr_iscdi=true |