Hydrological/Hydraulic Modeling-Based Thresholding of Multi SAR Remote Sensing Data for Flood Monitoring in Regions of the Vietnamese Lower Mekong River Basin

Synthetic Aperture Radar (SAR) remote sensing data can be used as an effective alternative to detect surface water and provide useful information regarding operational flood monitoring, in particular for the improvement of rapid flood assessments. However, this application frequently requires standa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2020-01, Vol.12 (1), p.71, Article 71
Hauptverfasser: Quang, Nguyen Hong, Tuan, Vu Anh, Hang, Le Thi Thu, Hung, Nguyen Manh, The, Doan Thi, Dieu, Dinh Thi, Anh, Ngo Duc, Hackney, Christopher R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 71
container_title Water (Basel)
container_volume 12
creator Quang, Nguyen Hong
Tuan, Vu Anh
Hang, Le Thi Thu
Hung, Nguyen Manh
The, Doan Thi
Dieu, Dinh Thi
Anh, Ngo Duc
Hackney, Christopher R.
description Synthetic Aperture Radar (SAR) remote sensing data can be used as an effective alternative to detect surface water and provide useful information regarding operational flood monitoring, in particular for the improvement of rapid flood assessments. However, this application frequently requires standard and simple, yet robust, algorithms. Although thresholding approaches meet these requirements, limitations such as data inequality over large spatial regions and challenges in estimating optimal threshold values remain. Here, we propose a new method for SAR water extraction named Hammock Swing Thresholding (HST). We applied this HST approach to four SAR remote sensing datasets, namely, Sentinel-1, ALOS-2, TerraSAR-X, and RadarSAT-2 for flood inundation mapping for a case study focusing on the Tam Nong district in the Vietnam Mekong delta. A 2D calibrated Hydrologic Engineering Centers River Analysis System (HEC-RAS) model was coupled with the HST outputs in order to estimate the optimal thresholds (OTs) where the SAR-based water masks fitted best with HEC-RAS's inundation patterns. Our results showed that water levels extracted from Sentinel-1 data best agreed with the HEC-RAS water extent (88.3%), following by ALOS-2 (85.9%), TerraSAR-X (77.2%). and RadarSAT-2 (72%) at OTs of -15, 68, 21, and 35 decibel (dB), respectively. Generated flood maps indicated changes in the flood extent of the flooding seasons from 2010 and 2014-2016 with variations in spatial extent appearing greater in the TerraSAR-X and RadarSAT-2 higher resolution maps. We recommend the use of OTs in applications of flood monitoring using SAR remote sensing data, such as for an open data cube (ODC).
doi_str_mv 10.3390/w12010071
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A791294099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A791294099</galeid><sourcerecordid>A791294099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-551687a8405232be1ab4cc0f61d61a5bf660a21752974e52a00cc406a1e0582c3</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhlcIJKrSA__AEieEth177f04hkApUiKktHBdOd7ZxMXxFNtL1D_Db8WrVBVH7IPn45l3JL9F8ZbDZVV1cHXkAjhAw18UZwKaqpRS8pf_xK-LixjvIR_Zta2Cs-LPzeMQyNHOGu2u5kRPzhq2pgGd9bvyo444sLt9wLgnN-QSo5GtJ5csu11s2AYPlJDdoo9z75NOmo0U2LUjGrKMt4nC3LE-sztLPs4CaY_sh8Xk9QEjshUdMbA1_qRMbuzvnOTF1r8pXo3aRbx4es-L79ef75Y35erbl6_Lxao0VcVTqRSv20a3EpSoxBa53kpjYKz5UHOttmNdgxa8UaJrJCqhAYyRUGuOoFphqvPi3Un3IdCvCWPq72kKPq_shVKgoG5FnanLE7XTDnvrR0pBm3wHPFhDHkeb64um46KT0HV54P1pwASKMeDYPwR70OGx59DPlvXPlmX2w4k94pbGaCx6g898tkzxrpWNgCe6_X96aZNO-eeXNPlU_QWvfKjS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550506826</pqid></control><display><type>article</type><title>Hydrological/Hydraulic Modeling-Based Thresholding of Multi SAR Remote Sensing Data for Flood Monitoring in Regions of the Vietnamese Lower Mekong River Basin</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Quang, Nguyen Hong ; Tuan, Vu Anh ; Hang, Le Thi Thu ; Hung, Nguyen Manh ; The, Doan Thi ; Dieu, Dinh Thi ; Anh, Ngo Duc ; Hackney, Christopher R.</creator><creatorcontrib>Quang, Nguyen Hong ; Tuan, Vu Anh ; Hang, Le Thi Thu ; Hung, Nguyen Manh ; The, Doan Thi ; Dieu, Dinh Thi ; Anh, Ngo Duc ; Hackney, Christopher R.</creatorcontrib><description>Synthetic Aperture Radar (SAR) remote sensing data can be used as an effective alternative to detect surface water and provide useful information regarding operational flood monitoring, in particular for the improvement of rapid flood assessments. However, this application frequently requires standard and simple, yet robust, algorithms. Although thresholding approaches meet these requirements, limitations such as data inequality over large spatial regions and challenges in estimating optimal threshold values remain. Here, we propose a new method for SAR water extraction named Hammock Swing Thresholding (HST). We applied this HST approach to four SAR remote sensing datasets, namely, Sentinel-1, ALOS-2, TerraSAR-X, and RadarSAT-2 for flood inundation mapping for a case study focusing on the Tam Nong district in the Vietnam Mekong delta. A 2D calibrated Hydrologic Engineering Centers River Analysis System (HEC-RAS) model was coupled with the HST outputs in order to estimate the optimal thresholds (OTs) where the SAR-based water masks fitted best with HEC-RAS's inundation patterns. Our results showed that water levels extracted from Sentinel-1 data best agreed with the HEC-RAS water extent (88.3%), following by ALOS-2 (85.9%), TerraSAR-X (77.2%). and RadarSAT-2 (72%) at OTs of -15, 68, 21, and 35 decibel (dB), respectively. Generated flood maps indicated changes in the flood extent of the flooding seasons from 2010 and 2014-2016 with variations in spatial extent appearing greater in the TerraSAR-X and RadarSAT-2 higher resolution maps. We recommend the use of OTs in applications of flood monitoring using SAR remote sensing data, such as for an open data cube (ODC).</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w12010071</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Aquatic resources ; Artificial satellites in remote sensing ; Case studies ; Dams ; Decibels ; Environmental Sciences ; Environmental Sciences &amp; Ecology ; Flood mapping ; Flooding ; Floods ; Hydraulics ; Hydrologic data ; Hydrology ; Life Sciences &amp; Biomedicine ; Physical Sciences ; Radarsat ; Remote monitoring ; Remote sensing ; River basins ; Rivers ; Science &amp; Technology ; Seasons ; Sediments ; Surface water ; Synthetic aperture radar ; Two dimensional analysis ; Two dimensional models ; Vegetation ; Vietnam ; Water levels ; Water Resources</subject><ispartof>Water (Basel), 2020-01, Vol.12 (1), p.71, Article 71</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000519847200071</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c331t-551687a8405232be1ab4cc0f61d61a5bf660a21752974e52a00cc406a1e0582c3</citedby><cites>FETCH-LOGICAL-c331t-551687a8405232be1ab4cc0f61d61a5bf660a21752974e52a00cc406a1e0582c3</cites><orcidid>0000-0001-5390-9136 ; 0000-0001-7657-624X ; 0000-0003-1627-6813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929,28252</link.rule.ids></links><search><creatorcontrib>Quang, Nguyen Hong</creatorcontrib><creatorcontrib>Tuan, Vu Anh</creatorcontrib><creatorcontrib>Hang, Le Thi Thu</creatorcontrib><creatorcontrib>Hung, Nguyen Manh</creatorcontrib><creatorcontrib>The, Doan Thi</creatorcontrib><creatorcontrib>Dieu, Dinh Thi</creatorcontrib><creatorcontrib>Anh, Ngo Duc</creatorcontrib><creatorcontrib>Hackney, Christopher R.</creatorcontrib><title>Hydrological/Hydraulic Modeling-Based Thresholding of Multi SAR Remote Sensing Data for Flood Monitoring in Regions of the Vietnamese Lower Mekong River Basin</title><title>Water (Basel)</title><addtitle>WATER-SUI</addtitle><description>Synthetic Aperture Radar (SAR) remote sensing data can be used as an effective alternative to detect surface water and provide useful information regarding operational flood monitoring, in particular for the improvement of rapid flood assessments. However, this application frequently requires standard and simple, yet robust, algorithms. Although thresholding approaches meet these requirements, limitations such as data inequality over large spatial regions and challenges in estimating optimal threshold values remain. Here, we propose a new method for SAR water extraction named Hammock Swing Thresholding (HST). We applied this HST approach to four SAR remote sensing datasets, namely, Sentinel-1, ALOS-2, TerraSAR-X, and RadarSAT-2 for flood inundation mapping for a case study focusing on the Tam Nong district in the Vietnam Mekong delta. A 2D calibrated Hydrologic Engineering Centers River Analysis System (HEC-RAS) model was coupled with the HST outputs in order to estimate the optimal thresholds (OTs) where the SAR-based water masks fitted best with HEC-RAS's inundation patterns. Our results showed that water levels extracted from Sentinel-1 data best agreed with the HEC-RAS water extent (88.3%), following by ALOS-2 (85.9%), TerraSAR-X (77.2%). and RadarSAT-2 (72%) at OTs of -15, 68, 21, and 35 decibel (dB), respectively. Generated flood maps indicated changes in the flood extent of the flooding seasons from 2010 and 2014-2016 with variations in spatial extent appearing greater in the TerraSAR-X and RadarSAT-2 higher resolution maps. We recommend the use of OTs in applications of flood monitoring using SAR remote sensing data, such as for an open data cube (ODC).</description><subject>Aquatic resources</subject><subject>Artificial satellites in remote sensing</subject><subject>Case studies</subject><subject>Dams</subject><subject>Decibels</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>Flood mapping</subject><subject>Flooding</subject><subject>Floods</subject><subject>Hydraulics</subject><subject>Hydrologic data</subject><subject>Hydrology</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Physical Sciences</subject><subject>Radarsat</subject><subject>Remote monitoring</subject><subject>Remote sensing</subject><subject>River basins</subject><subject>Rivers</subject><subject>Science &amp; Technology</subject><subject>Seasons</subject><subject>Sediments</subject><subject>Surface water</subject><subject>Synthetic aperture radar</subject><subject>Two dimensional analysis</subject><subject>Two dimensional models</subject><subject>Vegetation</subject><subject>Vietnam</subject><subject>Water levels</subject><subject>Water Resources</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkU1vEzEQhlcIJKrSA__AEieEth177f04hkApUiKktHBdOd7ZxMXxFNtL1D_Db8WrVBVH7IPn45l3JL9F8ZbDZVV1cHXkAjhAw18UZwKaqpRS8pf_xK-LixjvIR_Zta2Cs-LPzeMQyNHOGu2u5kRPzhq2pgGd9bvyo444sLt9wLgnN-QSo5GtJ5csu11s2AYPlJDdoo9z75NOmo0U2LUjGrKMt4nC3LE-sztLPs4CaY_sh8Xk9QEjshUdMbA1_qRMbuzvnOTF1r8pXo3aRbx4es-L79ef75Y35erbl6_Lxao0VcVTqRSv20a3EpSoxBa53kpjYKz5UHOttmNdgxa8UaJrJCqhAYyRUGuOoFphqvPi3Un3IdCvCWPq72kKPq_shVKgoG5FnanLE7XTDnvrR0pBm3wHPFhDHkeb64um46KT0HV54P1pwASKMeDYPwR70OGx59DPlvXPlmX2w4k94pbGaCx6g898tkzxrpWNgCe6_X96aZNO-eeXNPlU_QWvfKjS</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Quang, Nguyen Hong</creator><creator>Tuan, Vu Anh</creator><creator>Hang, Le Thi Thu</creator><creator>Hung, Nguyen Manh</creator><creator>The, Doan Thi</creator><creator>Dieu, Dinh Thi</creator><creator>Anh, Ngo Duc</creator><creator>Hackney, Christopher R.</creator><general>Mdpi</general><general>MDPI AG</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5390-9136</orcidid><orcidid>https://orcid.org/0000-0001-7657-624X</orcidid><orcidid>https://orcid.org/0000-0003-1627-6813</orcidid></search><sort><creationdate>20200101</creationdate><title>Hydrological/Hydraulic Modeling-Based Thresholding of Multi SAR Remote Sensing Data for Flood Monitoring in Regions of the Vietnamese Lower Mekong River Basin</title><author>Quang, Nguyen Hong ; Tuan, Vu Anh ; Hang, Le Thi Thu ; Hung, Nguyen Manh ; The, Doan Thi ; Dieu, Dinh Thi ; Anh, Ngo Duc ; Hackney, Christopher R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-551687a8405232be1ab4cc0f61d61a5bf660a21752974e52a00cc406a1e0582c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aquatic resources</topic><topic>Artificial satellites in remote sensing</topic><topic>Case studies</topic><topic>Dams</topic><topic>Decibels</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>Flood mapping</topic><topic>Flooding</topic><topic>Floods</topic><topic>Hydraulics</topic><topic>Hydrologic data</topic><topic>Hydrology</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Physical Sciences</topic><topic>Radarsat</topic><topic>Remote monitoring</topic><topic>Remote sensing</topic><topic>River basins</topic><topic>Rivers</topic><topic>Science &amp; Technology</topic><topic>Seasons</topic><topic>Sediments</topic><topic>Surface water</topic><topic>Synthetic aperture radar</topic><topic>Two dimensional analysis</topic><topic>Two dimensional models</topic><topic>Vegetation</topic><topic>Vietnam</topic><topic>Water levels</topic><topic>Water Resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quang, Nguyen Hong</creatorcontrib><creatorcontrib>Tuan, Vu Anh</creatorcontrib><creatorcontrib>Hang, Le Thi Thu</creatorcontrib><creatorcontrib>Hung, Nguyen Manh</creatorcontrib><creatorcontrib>The, Doan Thi</creatorcontrib><creatorcontrib>Dieu, Dinh Thi</creatorcontrib><creatorcontrib>Anh, Ngo Duc</creatorcontrib><creatorcontrib>Hackney, Christopher R.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quang, Nguyen Hong</au><au>Tuan, Vu Anh</au><au>Hang, Le Thi Thu</au><au>Hung, Nguyen Manh</au><au>The, Doan Thi</au><au>Dieu, Dinh Thi</au><au>Anh, Ngo Duc</au><au>Hackney, Christopher R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrological/Hydraulic Modeling-Based Thresholding of Multi SAR Remote Sensing Data for Flood Monitoring in Regions of the Vietnamese Lower Mekong River Basin</atitle><jtitle>Water (Basel)</jtitle><stitle>WATER-SUI</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>12</volume><issue>1</issue><spage>71</spage><pages>71-</pages><artnum>71</artnum><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Synthetic Aperture Radar (SAR) remote sensing data can be used as an effective alternative to detect surface water and provide useful information regarding operational flood monitoring, in particular for the improvement of rapid flood assessments. However, this application frequently requires standard and simple, yet robust, algorithms. Although thresholding approaches meet these requirements, limitations such as data inequality over large spatial regions and challenges in estimating optimal threshold values remain. Here, we propose a new method for SAR water extraction named Hammock Swing Thresholding (HST). We applied this HST approach to four SAR remote sensing datasets, namely, Sentinel-1, ALOS-2, TerraSAR-X, and RadarSAT-2 for flood inundation mapping for a case study focusing on the Tam Nong district in the Vietnam Mekong delta. A 2D calibrated Hydrologic Engineering Centers River Analysis System (HEC-RAS) model was coupled with the HST outputs in order to estimate the optimal thresholds (OTs) where the SAR-based water masks fitted best with HEC-RAS's inundation patterns. Our results showed that water levels extracted from Sentinel-1 data best agreed with the HEC-RAS water extent (88.3%), following by ALOS-2 (85.9%), TerraSAR-X (77.2%). and RadarSAT-2 (72%) at OTs of -15, 68, 21, and 35 decibel (dB), respectively. Generated flood maps indicated changes in the flood extent of the flooding seasons from 2010 and 2014-2016 with variations in spatial extent appearing greater in the TerraSAR-X and RadarSAT-2 higher resolution maps. We recommend the use of OTs in applications of flood monitoring using SAR remote sensing data, such as for an open data cube (ODC).</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/w12010071</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5390-9136</orcidid><orcidid>https://orcid.org/0000-0001-7657-624X</orcidid><orcidid>https://orcid.org/0000-0003-1627-6813</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2020-01, Vol.12 (1), p.71, Article 71
issn 2073-4441
2073-4441
language eng
recordid cdi_gale_infotracacademiconefile_A791294099
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Aquatic resources
Artificial satellites in remote sensing
Case studies
Dams
Decibels
Environmental Sciences
Environmental Sciences & Ecology
Flood mapping
Flooding
Floods
Hydraulics
Hydrologic data
Hydrology
Life Sciences & Biomedicine
Physical Sciences
Radarsat
Remote monitoring
Remote sensing
River basins
Rivers
Science & Technology
Seasons
Sediments
Surface water
Synthetic aperture radar
Two dimensional analysis
Two dimensional models
Vegetation
Vietnam
Water levels
Water Resources
title Hydrological/Hydraulic Modeling-Based Thresholding of Multi SAR Remote Sensing Data for Flood Monitoring in Regions of the Vietnamese Lower Mekong River Basin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T17%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrological/Hydraulic%20Modeling-Based%20Thresholding%20of%20Multi%20SAR%20Remote%20Sensing%20Data%20for%20Flood%20Monitoring%20in%20Regions%20of%20the%20Vietnamese%20Lower%20Mekong%20River%20Basin&rft.jtitle=Water%20(Basel)&rft.au=Quang,%20Nguyen%20Hong&rft.date=2020-01-01&rft.volume=12&rft.issue=1&rft.spage=71&rft.pages=71-&rft.artnum=71&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w12010071&rft_dat=%3Cgale_cross%3EA791294099%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550506826&rft_id=info:pmid/&rft_galeid=A791294099&rfr_iscdi=true