Reduction of Iron Oxides for CO[sub.2] Capture Materials
The iron industry is the largest energy-consuming manufacturing sector in the world, emitting 4–5% of the total carbon dioxide (CO[sub.2]). The development of iron-based systems for CO[sub.2] capture and storage could effectively contribute to reducing CO[sub.2] emissions. A wide set of different ir...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2024-04, Vol.17 (7) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Energies (Basel) |
container_volume | 17 |
creator | Fabozzi, Antonio Cerciello, Francesca Senneca, Osvalda |
description | The iron industry is the largest energy-consuming manufacturing sector in the world, emitting 4–5% of the total carbon dioxide (CO[sub.2]). The development of iron-based systems for CO[sub.2] capture and storage could effectively contribute to reducing CO[sub.2] emissions. A wide set of different iron oxides, such as hematite (Fe[sub.2]O[sub.3]), magnetite (Fe[sub.3]O[sub.4]), and wüstite (Fe[sub.(1−y)]O) could in fact be employed for CO[sub.2] capture at room temperature and pressure upon an investigation of their capturing properties. In order to achieve the most functional iron oxide form for CO[sub.2] capture, starting from Fe[sub.2]O[sub.3], a reducing agent such as hydrogen (H[sub.2]) or carbon monoxide (CO) can be employed. In this review, we present the state-of-the-art and recent advances on the different iron oxide materials employed, as well as on their reduction reactions with H[sub.2] and CO. |
doi_str_mv | 10.3390/en17071673 |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A790018296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A790018296</galeid><sourcerecordid>A790018296</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A7900182963</originalsourceid><addsrcrecordid>eNqVi7EKwjAURYMoWLSLX5AfaE36oGlGKYoOIoibiMT2RSI1kaQFP98MDq7eO5zDhUvIgrMcQLIlWi6Y4KWAEUm4lGXGmYDxj09JGsKDxQBwAEhIdcR2aHrjLHWa7nzk4W1aDFQ7T-vDOQy3vLjQWr36wSPdqx69UV2Yk4mOwPTLGck361O9ze6qw6ux2vVeNbEtPk3jLGoT95WQjPGqkCX8ffgAC2xDWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reduction of Iron Oxides for CO[sub.2] Capture Materials</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fabozzi, Antonio ; Cerciello, Francesca ; Senneca, Osvalda</creator><creatorcontrib>Fabozzi, Antonio ; Cerciello, Francesca ; Senneca, Osvalda</creatorcontrib><description>The iron industry is the largest energy-consuming manufacturing sector in the world, emitting 4–5% of the total carbon dioxide (CO[sub.2]). The development of iron-based systems for CO[sub.2] capture and storage could effectively contribute to reducing CO[sub.2] emissions. A wide set of different iron oxides, such as hematite (Fe[sub.2]O[sub.3]), magnetite (Fe[sub.3]O[sub.4]), and wüstite (Fe[sub.(1−y)]O) could in fact be employed for CO[sub.2] capture at room temperature and pressure upon an investigation of their capturing properties. In order to achieve the most functional iron oxide form for CO[sub.2] capture, starting from Fe[sub.2]O[sub.3], a reducing agent such as hydrogen (H[sub.2]) or carbon monoxide (CO) can be employed. In this review, we present the state-of-the-art and recent advances on the different iron oxide materials employed, as well as on their reduction reactions with H[sub.2] and CO.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en17071673</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Energy minerals ; Fossil fuels ; Iron oxides</subject><ispartof>Energies (Basel), 2024-04, Vol.17 (7)</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27907,27908</link.rule.ids></links><search><creatorcontrib>Fabozzi, Antonio</creatorcontrib><creatorcontrib>Cerciello, Francesca</creatorcontrib><creatorcontrib>Senneca, Osvalda</creatorcontrib><title>Reduction of Iron Oxides for CO[sub.2] Capture Materials</title><title>Energies (Basel)</title><description>The iron industry is the largest energy-consuming manufacturing sector in the world, emitting 4–5% of the total carbon dioxide (CO[sub.2]). The development of iron-based systems for CO[sub.2] capture and storage could effectively contribute to reducing CO[sub.2] emissions. A wide set of different iron oxides, such as hematite (Fe[sub.2]O[sub.3]), magnetite (Fe[sub.3]O[sub.4]), and wüstite (Fe[sub.(1−y)]O) could in fact be employed for CO[sub.2] capture at room temperature and pressure upon an investigation of their capturing properties. In order to achieve the most functional iron oxide form for CO[sub.2] capture, starting from Fe[sub.2]O[sub.3], a reducing agent such as hydrogen (H[sub.2]) or carbon monoxide (CO) can be employed. In this review, we present the state-of-the-art and recent advances on the different iron oxide materials employed, as well as on their reduction reactions with H[sub.2] and CO.</description><subject>Energy minerals</subject><subject>Fossil fuels</subject><subject>Iron oxides</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVi7EKwjAURYMoWLSLX5AfaE36oGlGKYoOIoibiMT2RSI1kaQFP98MDq7eO5zDhUvIgrMcQLIlWi6Y4KWAEUm4lGXGmYDxj09JGsKDxQBwAEhIdcR2aHrjLHWa7nzk4W1aDFQ7T-vDOQy3vLjQWr36wSPdqx69UV2Yk4mOwPTLGck361O9ze6qw6ux2vVeNbEtPk3jLGoT95WQjPGqkCX8ffgAC2xDWw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Fabozzi, Antonio</creator><creator>Cerciello, Francesca</creator><creator>Senneca, Osvalda</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20240401</creationdate><title>Reduction of Iron Oxides for CO[sub.2] Capture Materials</title><author>Fabozzi, Antonio ; Cerciello, Francesca ; Senneca, Osvalda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A7900182963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy minerals</topic><topic>Fossil fuels</topic><topic>Iron oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fabozzi, Antonio</creatorcontrib><creatorcontrib>Cerciello, Francesca</creatorcontrib><creatorcontrib>Senneca, Osvalda</creatorcontrib><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fabozzi, Antonio</au><au>Cerciello, Francesca</au><au>Senneca, Osvalda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of Iron Oxides for CO[sub.2] Capture Materials</atitle><jtitle>Energies (Basel)</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>17</volume><issue>7</issue><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>The iron industry is the largest energy-consuming manufacturing sector in the world, emitting 4–5% of the total carbon dioxide (CO[sub.2]). The development of iron-based systems for CO[sub.2] capture and storage could effectively contribute to reducing CO[sub.2] emissions. A wide set of different iron oxides, such as hematite (Fe[sub.2]O[sub.3]), magnetite (Fe[sub.3]O[sub.4]), and wüstite (Fe[sub.(1−y)]O) could in fact be employed for CO[sub.2] capture at room temperature and pressure upon an investigation of their capturing properties. In order to achieve the most functional iron oxide form for CO[sub.2] capture, starting from Fe[sub.2]O[sub.3], a reducing agent such as hydrogen (H[sub.2]) or carbon monoxide (CO) can be employed. In this review, we present the state-of-the-art and recent advances on the different iron oxide materials employed, as well as on their reduction reactions with H[sub.2] and CO.</abstract><pub>MDPI AG</pub><doi>10.3390/en17071673</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2024-04, Vol.17 (7) |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A790018296 |
source | DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Energy minerals Fossil fuels Iron oxides |
title | Reduction of Iron Oxides for CO[sub.2] Capture Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A04%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20Iron%20Oxides%20for%20CO%5Bsub.2%5D%20Capture%20Materials&rft.jtitle=Energies%20(Basel)&rft.au=Fabozzi,%20Antonio&rft.date=2024-04-01&rft.volume=17&rft.issue=7&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en17071673&rft_dat=%3Cgale%3EA790018296%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A790018296&rfr_iscdi=true |