Effects of Chemical and Biological Fungicide Applications on Sexual Sporulation of IRhizoctonia solani/I AG-3 TB on Tobacco

Rhizoctonia solani AG-3 TB primarily causes tobacco target spot disease by producing a large number of sexual spores. However, inducing sexual spore formation under in vitro conditions has been challenging, impeding further research on its control. In this study, field experiments were conducted to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life (Basel, Switzerland) Switzerland), 2024-03, Vol.14 (3)
Hauptverfasser: Yang, Yingmei, Zhang, Jie, Yan, Jiduo, Zhao, Lianjin, Luo, Li, Li, Chengyun, Yang, Genhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rhizoctonia solani AG-3 TB primarily causes tobacco target spot disease by producing a large number of sexual spores. However, inducing sexual spore formation under in vitro conditions has been challenging, impeding further research on its control. In this study, field experiments were conducted to assess the effects of different concentrations of chemical and biological fungicides on the production of sexual spores of R. solani AG-3 TB on tobacco plants. The results demonstrated that four chemical fungicides (propiconazole-morpholine guanidine, bordeaux mixture, thiophanate-methyl, and mancozeb) significantly induced sexual spore formation. Among them, increasing the concentrations of the first three fungicides resulted in an increase in the number of sexual spores, while increasing the concentration of mancozeb led to a decrease in spore count. The pathogenic fungus produced more sexual spores during the night than during the day. Temperature, humidity, and light conditions influenced spore production. Additionally, the infection rate of sexual spores was directly proportional to their concentration and inoculation time, but their survival time did not exceed 6 h in vitro. Importantly, Streptomyces rectiolaceus A8 significantly suppressed sexual spore formation, achieving an 83.63% control efficacy in the field and producing antimicrobial substances against R. solani AG-3 TB. In conclusion, appropriate concentrations of chemical fungicides can induce sexual spore formation, while A8 can inhibit their production, showing potential value for controlling tobacco target spot disease.
ISSN:2075-1729
2075-1729
DOI:10.3390/life14030404