Method for Sparse Representation of Complex Data Based on Overcomplete Basis, Il/I[sub.1] Norm, and Neural MFNN-like Network

The article presents the results of research into a method for representing complex data based on an overcomplete basis and l[sub.0]/l[sub.1] norms. The proposed method is an extended modification of the neural-like MFNN (minimum fuel neural network) for the case of complex data. The influence of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-02, Vol.14 (5)
Hauptverfasser: Panokin, Nikolay V, Averin, Artem V, Kostin, Ivan A, Karlovskiy, Alexander V, Orelkina, Daria I, Nalivaiko, Anton Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Applied sciences
container_volume 14
creator Panokin, Nikolay V
Averin, Artem V
Kostin, Ivan A
Karlovskiy, Alexander V
Orelkina, Daria I
Nalivaiko, Anton Yu
description The article presents the results of research into a method for representing complex data based on an overcomplete basis and l[sub.0]/l[sub.1] norms. The proposed method is an extended modification of the neural-like MFNN (minimum fuel neural network) for the case of complex data. The influence of the choice of activation function on the performance of the method is analyzed. The results of the numerical simulation demonstrate the effectiveness of the proposed method for the case of sparse representation of complex data and can be used to determine the direction of arrival (DOA) for a uniform linear array (ULA).
doi_str_mv 10.3390/app14051959
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A786425646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A786425646</galeid><sourcerecordid>A786425646</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A7864256463</originalsourceid><addsrcrecordid>eNqVi81OwzAQhC0EEhXtiRfYB2hSu85Pc4RC1R4aJOCGEFqSNZg6sWW7wIGHJ6AeuDJzmNE3GsbOBU-lrPgMnRMZz0WVV0dsNOdlkchMlMd_-imbhPDGB1VCLgQfsa8txVfbgrIe7hz6QHBLzlOgPmLUtgerYGk7Z-gTrjAiXGKgFobh5p1887tE-qE6TGFjZpuHsH9OxSPU1ndTwL6FmvYeDWxXdZ0YvaMBxA_rd2N2otAEmhzyjKWr6_vlOnlBQ0-6VzZ6bAa31OnG9qT0wC_KRZHN8yIr5L8P3_piW7k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Method for Sparse Representation of Complex Data Based on Overcomplete Basis, Il/I[sub.1] Norm, and Neural MFNN-like Network</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Panokin, Nikolay V ; Averin, Artem V ; Kostin, Ivan A ; Karlovskiy, Alexander V ; Orelkina, Daria I ; Nalivaiko, Anton Yu</creator><creatorcontrib>Panokin, Nikolay V ; Averin, Artem V ; Kostin, Ivan A ; Karlovskiy, Alexander V ; Orelkina, Daria I ; Nalivaiko, Anton Yu</creatorcontrib><description>The article presents the results of research into a method for representing complex data based on an overcomplete basis and l[sub.0]/l[sub.1] norms. The proposed method is an extended modification of the neural-like MFNN (minimum fuel neural network) for the case of complex data. The influence of the choice of activation function on the performance of the method is analyzed. The results of the numerical simulation demonstrate the effectiveness of the proposed method for the case of sparse representation of complex data and can be used to determine the direction of arrival (DOA) for a uniform linear array (ULA).</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app14051959</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Algorithms ; Methods ; Neural networks ; Numerical analysis ; Simulation methods</subject><ispartof>Applied sciences, 2024-02, Vol.14 (5)</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Panokin, Nikolay V</creatorcontrib><creatorcontrib>Averin, Artem V</creatorcontrib><creatorcontrib>Kostin, Ivan A</creatorcontrib><creatorcontrib>Karlovskiy, Alexander V</creatorcontrib><creatorcontrib>Orelkina, Daria I</creatorcontrib><creatorcontrib>Nalivaiko, Anton Yu</creatorcontrib><title>Method for Sparse Representation of Complex Data Based on Overcomplete Basis, Il/I[sub.1] Norm, and Neural MFNN-like Network</title><title>Applied sciences</title><description>The article presents the results of research into a method for representing complex data based on an overcomplete basis and l[sub.0]/l[sub.1] norms. The proposed method is an extended modification of the neural-like MFNN (minimum fuel neural network) for the case of complex data. The influence of the choice of activation function on the performance of the method is analyzed. The results of the numerical simulation demonstrate the effectiveness of the proposed method for the case of sparse representation of complex data and can be used to determine the direction of arrival (DOA) for a uniform linear array (ULA).</description><subject>Algorithms</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Numerical analysis</subject><subject>Simulation methods</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVi81OwzAQhC0EEhXtiRfYB2hSu85Pc4RC1R4aJOCGEFqSNZg6sWW7wIGHJ6AeuDJzmNE3GsbOBU-lrPgMnRMZz0WVV0dsNOdlkchMlMd_-imbhPDGB1VCLgQfsa8txVfbgrIe7hz6QHBLzlOgPmLUtgerYGk7Z-gTrjAiXGKgFobh5p1887tE-qE6TGFjZpuHsH9OxSPU1ndTwL6FmvYeDWxXdZ0YvaMBxA_rd2N2otAEmhzyjKWr6_vlOnlBQ0-6VzZ6bAa31OnG9qT0wC_KRZHN8yIr5L8P3_piW7k</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Panokin, Nikolay V</creator><creator>Averin, Artem V</creator><creator>Kostin, Ivan A</creator><creator>Karlovskiy, Alexander V</creator><creator>Orelkina, Daria I</creator><creator>Nalivaiko, Anton Yu</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20240201</creationdate><title>Method for Sparse Representation of Complex Data Based on Overcomplete Basis, Il/I[sub.1] Norm, and Neural MFNN-like Network</title><author>Panokin, Nikolay V ; Averin, Artem V ; Kostin, Ivan A ; Karlovskiy, Alexander V ; Orelkina, Daria I ; Nalivaiko, Anton Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A7864256463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Numerical analysis</topic><topic>Simulation methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panokin, Nikolay V</creatorcontrib><creatorcontrib>Averin, Artem V</creatorcontrib><creatorcontrib>Kostin, Ivan A</creatorcontrib><creatorcontrib>Karlovskiy, Alexander V</creatorcontrib><creatorcontrib>Orelkina, Daria I</creatorcontrib><creatorcontrib>Nalivaiko, Anton Yu</creatorcontrib><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panokin, Nikolay V</au><au>Averin, Artem V</au><au>Kostin, Ivan A</au><au>Karlovskiy, Alexander V</au><au>Orelkina, Daria I</au><au>Nalivaiko, Anton Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Method for Sparse Representation of Complex Data Based on Overcomplete Basis, Il/I[sub.1] Norm, and Neural MFNN-like Network</atitle><jtitle>Applied sciences</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>14</volume><issue>5</issue><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The article presents the results of research into a method for representing complex data based on an overcomplete basis and l[sub.0]/l[sub.1] norms. The proposed method is an extended modification of the neural-like MFNN (minimum fuel neural network) for the case of complex data. The influence of the choice of activation function on the performance of the method is analyzed. The results of the numerical simulation demonstrate the effectiveness of the proposed method for the case of sparse representation of complex data and can be used to determine the direction of arrival (DOA) for a uniform linear array (ULA).</abstract><pub>MDPI AG</pub><doi>10.3390/app14051959</doi></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2024-02, Vol.14 (5)
issn 2076-3417
2076-3417
language eng
recordid cdi_gale_infotracacademiconefile_A786425646
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Methods
Neural networks
Numerical analysis
Simulation methods
title Method for Sparse Representation of Complex Data Based on Overcomplete Basis, Il/I[sub.1] Norm, and Neural MFNN-like Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Method%20for%20Sparse%20Representation%20of%20Complex%20Data%20Based%20on%20Overcomplete%20Basis,%20Il/I%5Bsub.1%5D%20Norm,%20and%20Neural%20MFNN-like%20Network&rft.jtitle=Applied%20sciences&rft.au=Panokin,%20Nikolay%20V&rft.date=2024-02-01&rft.volume=14&rft.issue=5&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app14051959&rft_dat=%3Cgale%3EA786425646%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A786425646&rfr_iscdi=true