Synergistic Effects of Functionalized WS[sub.2] and SiO[sub.2] Nanoparticles and a Phosphonium Ionic Liquid as Hybrid Additives of Low-Viscosity Lubricants
This research shows the antifriction and antiwear synergies between a phosphonium ionic liquid (IL) and f-WS[sub.2] and f-SiO[sub.2] nanoparticles (NPs) as additives of a base oil with low viscosity (PAO6). Mass concentrations of 0.1 wt% nanoadditives and 1% IL were selected to formulate the nanolub...
Gespeichert in:
Veröffentlicht in: | Lubricants 2024-02, Vol.12 (2) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This research shows the antifriction and antiwear synergies between a phosphonium ionic liquid (IL) and f-WS[sub.2] and f-SiO[sub.2] nanoparticles (NPs) as additives of a base oil with low viscosity (PAO6). Mass concentrations of 0.1 wt% nanoadditives and 1% IL were selected to formulate the nanolubricants. Pure sliding and rolling–sliding friction tests were performed at 120 °C, finding great friction reductions in comparison with the PAO6 base oil, specifically for the double hybrid nanolubricant (PAO6 + 1 wt% IL + 0.1 wt% f-WS[sub.2] + 0.1 wt% f-SiO[sub.2]). Regarding the wear produced, the greatest antiwear behavior was also achieved for the double hybrid nanolubricant (width reduction of 48% and worn area decrease of 84%). Furthermore, by means of Raman microscopy and roughness examination of the worn surfaces, it can be proposed that the lubrication mechanism of doubled hybrid nanolubricants could be supported by the adsorbed tribofilm (IL and f-WS[sub.2]) as well as the mending effects (f-WS[sub.2] and f-SiO[sub.2]). |
---|---|
ISSN: | 2075-4442 2075-4442 |
DOI: | 10.3390/lubricants12020058 |