Effect of Synthesis Factors on Microstructure and Thermoelectric Properties of FeTe[sub.2] Prepared by Solid-State Reaction

The alloying compound FeTe[sub.2] is a semi-metallic material with low thermal conductivity and has the potential to become a thermoelectric material. Single-phase FeTe[sub.2] compounds are synthesized using a two-step sintering method, and the effects of the optimal sintering temperature, holding t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-11, Vol.16 (22)
Hauptverfasser: Zhang, Lang, Qin, Bingke, Sun, Cheng, Ji, Yonghua, Zhao, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page
container_title Materials
container_volume 16
creator Zhang, Lang
Qin, Bingke
Sun, Cheng
Ji, Yonghua
Zhao, Dan
description The alloying compound FeTe[sub.2] is a semi-metallic material with low thermal conductivity and has the potential to become a thermoelectric material. Single-phase FeTe[sub.2] compounds are synthesized using a two-step sintering method, and the effects of the optimal sintering temperature, holding temperature, and holding time on the thermoelectric properties of the alloy compound FeTe[sub.2] are investigated. The phase composition, microstructure, and electrical transport properties of the FeTe[sub.2] compound are systematically analyzed. The results show that single-phase FeTe[sub.2] compounds can be synthesized within the range of a sintering temperature of 823 K and holding time of 10~60 min, and the thermoelectric properties gradually deteriorate with the prolongation of the holding time. Microstructural analysis reveals that the sample of the alloy compound FeTe[sub.2] exhibits a three-dimensional network structure with numerous fine pores, which can impede thermal conduction and thus reduce the overall thermal conductivity of the material. When the sintering temperature is 823 K and the holding time is 30 min, the sample achieves the minimum electrical resistivity of 6.9 mΩ·cm. The maximum Seebeck coefficient of 65.48 μV/K is obtained when the sample is held at 823 K for 10 min; and under this condition, the maximum power factor of 59.54 μW/(m·K[sup.2]) is achieved. In the whole test temperature range of 323~573 K, when the test temperature of the sample is 375 K, the minimum thermal conductivity is 1.46 W/(m·K), and the maximum ZT is 1.57 × 10[sup.−2].
doi_str_mv 10.3390/ma16227170
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A774323062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A774323062</galeid><sourcerecordid>A774323062</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A7743230623</originalsourceid><addsrcrecordid>eNqVTM1KxDAYDKLgonvxCb4XaM1Pac1RZIsXQWxvIpJNv7iRNt-SpIfFlzeCB6_OHGaYYYaxG8FrpTS_XYxopexEx8_YRmjdVkI3zfkff8m2KX3yAqXEndQb9rVzDm0GcjCcQj5g8gl6YzPFBBTgydtIKcfV5jUimDDBeMC4EM5lFr2F50hHjNlj-jnpccTXtO5r-VYaPJqIE-xPMNDsp2rIJiO8YPn3FK7ZhTNzwu2vXrG6340Pj9WHmfHdB0c5Gls44eItBXS-5Pdd1yipeCvVvwffbjJc6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of Synthesis Factors on Microstructure and Thermoelectric Properties of FeTe[sub.2] Prepared by Solid-State Reaction</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Lang ; Qin, Bingke ; Sun, Cheng ; Ji, Yonghua ; Zhao, Dan</creator><creatorcontrib>Zhang, Lang ; Qin, Bingke ; Sun, Cheng ; Ji, Yonghua ; Zhao, Dan</creatorcontrib><description>The alloying compound FeTe[sub.2] is a semi-metallic material with low thermal conductivity and has the potential to become a thermoelectric material. Single-phase FeTe[sub.2] compounds are synthesized using a two-step sintering method, and the effects of the optimal sintering temperature, holding temperature, and holding time on the thermoelectric properties of the alloy compound FeTe[sub.2] are investigated. The phase composition, microstructure, and electrical transport properties of the FeTe[sub.2] compound are systematically analyzed. The results show that single-phase FeTe[sub.2] compounds can be synthesized within the range of a sintering temperature of 823 K and holding time of 10~60 min, and the thermoelectric properties gradually deteriorate with the prolongation of the holding time. Microstructural analysis reveals that the sample of the alloy compound FeTe[sub.2] exhibits a three-dimensional network structure with numerous fine pores, which can impede thermal conduction and thus reduce the overall thermal conductivity of the material. When the sintering temperature is 823 K and the holding time is 30 min, the sample achieves the minimum electrical resistivity of 6.9 mΩ·cm. The maximum Seebeck coefficient of 65.48 μV/K is obtained when the sample is held at 823 K for 10 min; and under this condition, the maximum power factor of 59.54 μW/(m·K[sup.2]) is achieved. In the whole test temperature range of 323~573 K, when the test temperature of the sample is 375 K, the minimum thermal conductivity is 1.46 W/(m·K), and the maximum ZT is 1.57 × 10[sup.−2].</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16227170</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Alternative energy sources ; Force and energy ; Thermoelectricity</subject><ispartof>Materials, 2023-11, Vol.16 (22)</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhang, Lang</creatorcontrib><creatorcontrib>Qin, Bingke</creatorcontrib><creatorcontrib>Sun, Cheng</creatorcontrib><creatorcontrib>Ji, Yonghua</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><title>Effect of Synthesis Factors on Microstructure and Thermoelectric Properties of FeTe[sub.2] Prepared by Solid-State Reaction</title><title>Materials</title><description>The alloying compound FeTe[sub.2] is a semi-metallic material with low thermal conductivity and has the potential to become a thermoelectric material. Single-phase FeTe[sub.2] compounds are synthesized using a two-step sintering method, and the effects of the optimal sintering temperature, holding temperature, and holding time on the thermoelectric properties of the alloy compound FeTe[sub.2] are investigated. The phase composition, microstructure, and electrical transport properties of the FeTe[sub.2] compound are systematically analyzed. The results show that single-phase FeTe[sub.2] compounds can be synthesized within the range of a sintering temperature of 823 K and holding time of 10~60 min, and the thermoelectric properties gradually deteriorate with the prolongation of the holding time. Microstructural analysis reveals that the sample of the alloy compound FeTe[sub.2] exhibits a three-dimensional network structure with numerous fine pores, which can impede thermal conduction and thus reduce the overall thermal conductivity of the material. When the sintering temperature is 823 K and the holding time is 30 min, the sample achieves the minimum electrical resistivity of 6.9 mΩ·cm. The maximum Seebeck coefficient of 65.48 μV/K is obtained when the sample is held at 823 K for 10 min; and under this condition, the maximum power factor of 59.54 μW/(m·K[sup.2]) is achieved. In the whole test temperature range of 323~573 K, when the test temperature of the sample is 375 K, the minimum thermal conductivity is 1.46 W/(m·K), and the maximum ZT is 1.57 × 10[sup.−2].</description><subject>Alternative energy sources</subject><subject>Force and energy</subject><subject>Thermoelectricity</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVTM1KxDAYDKLgonvxCb4XaM1Pac1RZIsXQWxvIpJNv7iRNt-SpIfFlzeCB6_OHGaYYYaxG8FrpTS_XYxopexEx8_YRmjdVkI3zfkff8m2KX3yAqXEndQb9rVzDm0GcjCcQj5g8gl6YzPFBBTgydtIKcfV5jUimDDBeMC4EM5lFr2F50hHjNlj-jnpccTXtO5r-VYaPJqIE-xPMNDsp2rIJiO8YPn3FK7ZhTNzwu2vXrG6340Pj9WHmfHdB0c5Gls44eItBXS-5Pdd1yipeCvVvwffbjJc6w</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zhang, Lang</creator><creator>Qin, Bingke</creator><creator>Sun, Cheng</creator><creator>Ji, Yonghua</creator><creator>Zhao, Dan</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20231101</creationdate><title>Effect of Synthesis Factors on Microstructure and Thermoelectric Properties of FeTe[sub.2] Prepared by Solid-State Reaction</title><author>Zhang, Lang ; Qin, Bingke ; Sun, Cheng ; Ji, Yonghua ; Zhao, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A7743230623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alternative energy sources</topic><topic>Force and energy</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lang</creatorcontrib><creatorcontrib>Qin, Bingke</creatorcontrib><creatorcontrib>Sun, Cheng</creatorcontrib><creatorcontrib>Ji, Yonghua</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lang</au><au>Qin, Bingke</au><au>Sun, Cheng</au><au>Ji, Yonghua</au><au>Zhao, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Synthesis Factors on Microstructure and Thermoelectric Properties of FeTe[sub.2] Prepared by Solid-State Reaction</atitle><jtitle>Materials</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>16</volume><issue>22</issue><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The alloying compound FeTe[sub.2] is a semi-metallic material with low thermal conductivity and has the potential to become a thermoelectric material. Single-phase FeTe[sub.2] compounds are synthesized using a two-step sintering method, and the effects of the optimal sintering temperature, holding temperature, and holding time on the thermoelectric properties of the alloy compound FeTe[sub.2] are investigated. The phase composition, microstructure, and electrical transport properties of the FeTe[sub.2] compound are systematically analyzed. The results show that single-phase FeTe[sub.2] compounds can be synthesized within the range of a sintering temperature of 823 K and holding time of 10~60 min, and the thermoelectric properties gradually deteriorate with the prolongation of the holding time. Microstructural analysis reveals that the sample of the alloy compound FeTe[sub.2] exhibits a three-dimensional network structure with numerous fine pores, which can impede thermal conduction and thus reduce the overall thermal conductivity of the material. When the sintering temperature is 823 K and the holding time is 30 min, the sample achieves the minimum electrical resistivity of 6.9 mΩ·cm. The maximum Seebeck coefficient of 65.48 μV/K is obtained when the sample is held at 823 K for 10 min; and under this condition, the maximum power factor of 59.54 μW/(m·K[sup.2]) is achieved. In the whole test temperature range of 323~573 K, when the test temperature of the sample is 375 K, the minimum thermal conductivity is 1.46 W/(m·K), and the maximum ZT is 1.57 × 10[sup.−2].</abstract><pub>MDPI AG</pub><doi>10.3390/ma16227170</doi></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-11, Vol.16 (22)
issn 1996-1944
1996-1944
language eng
recordid cdi_gale_infotracacademiconefile_A774323062
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alternative energy sources
Force and energy
Thermoelectricity
title Effect of Synthesis Factors on Microstructure and Thermoelectric Properties of FeTe[sub.2] Prepared by Solid-State Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Synthesis%20Factors%20on%20Microstructure%20and%20Thermoelectric%20Properties%20of%20FeTe%5Bsub.2%5D%20Prepared%20by%20Solid-State%20Reaction&rft.jtitle=Materials&rft.au=Zhang,%20Lang&rft.date=2023-11-01&rft.volume=16&rft.issue=22&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16227170&rft_dat=%3Cgale%3EA774323062%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A774323062&rfr_iscdi=true