Spatiotemporal variation in leaf size and shape in response to climate
Abstract Aims Morphological variation of leaves is a key indicator of plant response to climatic change. Leaf size and shape are associated with carbon, water and energy exchange of plants with their environment. However, whether and how leaf size and shape responded to climate change over the past...
Gespeichert in:
Veröffentlicht in: | Journal of plant ecology 2020-02, Vol.13 (1), p.87-96 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 96 |
---|---|
container_issue | 1 |
container_start_page | 87 |
container_title | Journal of plant ecology |
container_volume | 13 |
creator | Li, Yaoqi Zou, Dongting Shrestha, Nawal Xu, Xiaoting Wang, Qinggang Jia, Wen Wang, Zhiheng |
description | Abstract
Aims
Morphological variation of leaves is a key indicator of plant response to climatic change. Leaf size and shape are associated with carbon, water and energy exchange of plants with their environment. However, whether and how leaf size and shape responded to climate change over the past decades remains poorly studied. Moreover, many studies have only explored inter- but not intraspecific variation in leaf size and shape across space and time.
Methods
We collected >6000 herbarium specimens spanning 98 years (1910–2008) in China for seven representative dicot species and measured their leaf length and width. We explored geographical patterns and temporal trends in leaf size (i.e. leaf length, leaf width and length × width product) and shape (i.e. length/width ratio), and investigated the effects of changes in precipitation and temperature over time and space on the variation in leaf size and shape.
Important Findings
After accounting for the effects of sampling time, leaf size decreased with latitude for all species combined, but the relationship varied among species. Leaf size and shape were positively correlated with temperature and precipitation across space. After accounting for the effects of sampling locations, leaf size of all species combined increased with time. Leaf size changes over time were mostly positively correlated with precipitation, whereas leaf shape changes were mostly correlated with temperature. Overall, our results indicate significant spatial and temporal intraspecific variation in leaf size and shape in response to climate. Our study also demonstrates that herbarium specimens collected over a considerable period of time provide a good resource to study the impacts of climate change on plant morphological traits. |
doi_str_mv | 10.1093/jpe/rtz053 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A760969041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760969041</galeid><oup_id>10.1093/jpe/rtz053</oup_id><sourcerecordid>A760969041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-43a96a43af30079428e4f94192469666cb09fabd810f26db0c9a661daa3364e83</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKsXf0EuXoRtk02aNsdSrAoFDyp4W6bZiaZsNyGJgv31pqwHTzIwM3y8NwyPkGvOJpxpMd0FnMZ8YDNxQkZ8PqsrrcXb6Z_9nFyktGNMyUJGZP0cIDufcR98hI5-QXRH0FPX0w7B0uQOSKFvafqAgEccMQXfJ6TZU9O5PWS8JGcWuoRXv3NMXtd3L6uHavN0_7habipTK5UrKUArKN0KxuZa1guUVkuua6m0UspsmbawbRec2Vq1W2Y0KMVbACGUxIUYk8lw9x06bFxvfY5gSrW4d8b3aF3hy7liWmkmeTHcDgYTfUoRbRNi-Th-N5w1x8iaElkzRFbEN4PYf4b_dD9SMGy0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spatiotemporal variation in leaf size and shape in response to climate</title><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Yaoqi ; Zou, Dongting ; Shrestha, Nawal ; Xu, Xiaoting ; Wang, Qinggang ; Jia, Wen ; Wang, Zhiheng</creator><contributor>Schmid, Bernhard</contributor><creatorcontrib>Li, Yaoqi ; Zou, Dongting ; Shrestha, Nawal ; Xu, Xiaoting ; Wang, Qinggang ; Jia, Wen ; Wang, Zhiheng ; Schmid, Bernhard</creatorcontrib><description>Abstract
Aims
Morphological variation of leaves is a key indicator of plant response to climatic change. Leaf size and shape are associated with carbon, water and energy exchange of plants with their environment. However, whether and how leaf size and shape responded to climate change over the past decades remains poorly studied. Moreover, many studies have only explored inter- but not intraspecific variation in leaf size and shape across space and time.
Methods
We collected >6000 herbarium specimens spanning 98 years (1910–2008) in China for seven representative dicot species and measured their leaf length and width. We explored geographical patterns and temporal trends in leaf size (i.e. leaf length, leaf width and length × width product) and shape (i.e. length/width ratio), and investigated the effects of changes in precipitation and temperature over time and space on the variation in leaf size and shape.
Important Findings
After accounting for the effects of sampling time, leaf size decreased with latitude for all species combined, but the relationship varied among species. Leaf size and shape were positively correlated with temperature and precipitation across space. After accounting for the effects of sampling locations, leaf size of all species combined increased with time. Leaf size changes over time were mostly positively correlated with precipitation, whereas leaf shape changes were mostly correlated with temperature. Overall, our results indicate significant spatial and temporal intraspecific variation in leaf size and shape in response to climate. Our study also demonstrates that herbarium specimens collected over a considerable period of time provide a good resource to study the impacts of climate change on plant morphological traits.</description><identifier>ISSN: 1752-993X</identifier><identifier>ISSN: 1752-9921</identifier><identifier>EISSN: 1752-993X</identifier><identifier>DOI: 10.1093/jpe/rtz053</identifier><language>eng</language><publisher>UK: Oxford University Press</publisher><subject>Analysis ; Climatic changes ; Herbaria ; Identification and classification ; Influence ; Leaves ; Measurement ; Methods ; Spatial analysis (Statistics)</subject><ispartof>Journal of plant ecology, 2020-02, Vol.13 (1), p.87-96</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of the Institute of Botany, Chinese Academy of Sciences and the Botanical Society of China. 2019</rights><rights>COPYRIGHT 2020 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-43a96a43af30079428e4f94192469666cb09fabd810f26db0c9a661daa3364e83</citedby><cites>FETCH-LOGICAL-c266t-43a96a43af30079428e4f94192469666cb09fabd810f26db0c9a661daa3364e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Schmid, Bernhard</contributor><creatorcontrib>Li, Yaoqi</creatorcontrib><creatorcontrib>Zou, Dongting</creatorcontrib><creatorcontrib>Shrestha, Nawal</creatorcontrib><creatorcontrib>Xu, Xiaoting</creatorcontrib><creatorcontrib>Wang, Qinggang</creatorcontrib><creatorcontrib>Jia, Wen</creatorcontrib><creatorcontrib>Wang, Zhiheng</creatorcontrib><title>Spatiotemporal variation in leaf size and shape in response to climate</title><title>Journal of plant ecology</title><description>Abstract
Aims
Morphological variation of leaves is a key indicator of plant response to climatic change. Leaf size and shape are associated with carbon, water and energy exchange of plants with their environment. However, whether and how leaf size and shape responded to climate change over the past decades remains poorly studied. Moreover, many studies have only explored inter- but not intraspecific variation in leaf size and shape across space and time.
Methods
We collected >6000 herbarium specimens spanning 98 years (1910–2008) in China for seven representative dicot species and measured their leaf length and width. We explored geographical patterns and temporal trends in leaf size (i.e. leaf length, leaf width and length × width product) and shape (i.e. length/width ratio), and investigated the effects of changes in precipitation and temperature over time and space on the variation in leaf size and shape.
Important Findings
After accounting for the effects of sampling time, leaf size decreased with latitude for all species combined, but the relationship varied among species. Leaf size and shape were positively correlated with temperature and precipitation across space. After accounting for the effects of sampling locations, leaf size of all species combined increased with time. Leaf size changes over time were mostly positively correlated with precipitation, whereas leaf shape changes were mostly correlated with temperature. Overall, our results indicate significant spatial and temporal intraspecific variation in leaf size and shape in response to climate. Our study also demonstrates that herbarium specimens collected over a considerable period of time provide a good resource to study the impacts of climate change on plant morphological traits.</description><subject>Analysis</subject><subject>Climatic changes</subject><subject>Herbaria</subject><subject>Identification and classification</subject><subject>Influence</subject><subject>Leaves</subject><subject>Measurement</subject><subject>Methods</subject><subject>Spatial analysis (Statistics)</subject><issn>1752-993X</issn><issn>1752-9921</issn><issn>1752-993X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kEFLAzEQhYMoWKsXf0EuXoRtk02aNsdSrAoFDyp4W6bZiaZsNyGJgv31pqwHTzIwM3y8NwyPkGvOJpxpMd0FnMZ8YDNxQkZ8PqsrrcXb6Z_9nFyktGNMyUJGZP0cIDufcR98hI5-QXRH0FPX0w7B0uQOSKFvafqAgEccMQXfJ6TZU9O5PWS8JGcWuoRXv3NMXtd3L6uHavN0_7habipTK5UrKUArKN0KxuZa1guUVkuua6m0UspsmbawbRec2Vq1W2Y0KMVbACGUxIUYk8lw9x06bFxvfY5gSrW4d8b3aF3hy7liWmkmeTHcDgYTfUoRbRNi-Th-N5w1x8iaElkzRFbEN4PYf4b_dD9SMGy0</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Li, Yaoqi</creator><creator>Zou, Dongting</creator><creator>Shrestha, Nawal</creator><creator>Xu, Xiaoting</creator><creator>Wang, Qinggang</creator><creator>Jia, Wen</creator><creator>Wang, Zhiheng</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200201</creationdate><title>Spatiotemporal variation in leaf size and shape in response to climate</title><author>Li, Yaoqi ; Zou, Dongting ; Shrestha, Nawal ; Xu, Xiaoting ; Wang, Qinggang ; Jia, Wen ; Wang, Zhiheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-43a96a43af30079428e4f94192469666cb09fabd810f26db0c9a661daa3364e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Climatic changes</topic><topic>Herbaria</topic><topic>Identification and classification</topic><topic>Influence</topic><topic>Leaves</topic><topic>Measurement</topic><topic>Methods</topic><topic>Spatial analysis (Statistics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yaoqi</creatorcontrib><creatorcontrib>Zou, Dongting</creatorcontrib><creatorcontrib>Shrestha, Nawal</creatorcontrib><creatorcontrib>Xu, Xiaoting</creatorcontrib><creatorcontrib>Wang, Qinggang</creatorcontrib><creatorcontrib>Jia, Wen</creatorcontrib><creatorcontrib>Wang, Zhiheng</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><jtitle>Journal of plant ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yaoqi</au><au>Zou, Dongting</au><au>Shrestha, Nawal</au><au>Xu, Xiaoting</au><au>Wang, Qinggang</au><au>Jia, Wen</au><au>Wang, Zhiheng</au><au>Schmid, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal variation in leaf size and shape in response to climate</atitle><jtitle>Journal of plant ecology</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>13</volume><issue>1</issue><spage>87</spage><epage>96</epage><pages>87-96</pages><issn>1752-993X</issn><issn>1752-9921</issn><eissn>1752-993X</eissn><abstract>Abstract
Aims
Morphological variation of leaves is a key indicator of plant response to climatic change. Leaf size and shape are associated with carbon, water and energy exchange of plants with their environment. However, whether and how leaf size and shape responded to climate change over the past decades remains poorly studied. Moreover, many studies have only explored inter- but not intraspecific variation in leaf size and shape across space and time.
Methods
We collected >6000 herbarium specimens spanning 98 years (1910–2008) in China for seven representative dicot species and measured their leaf length and width. We explored geographical patterns and temporal trends in leaf size (i.e. leaf length, leaf width and length × width product) and shape (i.e. length/width ratio), and investigated the effects of changes in precipitation and temperature over time and space on the variation in leaf size and shape.
Important Findings
After accounting for the effects of sampling time, leaf size decreased with latitude for all species combined, but the relationship varied among species. Leaf size and shape were positively correlated with temperature and precipitation across space. After accounting for the effects of sampling locations, leaf size of all species combined increased with time. Leaf size changes over time were mostly positively correlated with precipitation, whereas leaf shape changes were mostly correlated with temperature. Overall, our results indicate significant spatial and temporal intraspecific variation in leaf size and shape in response to climate. Our study also demonstrates that herbarium specimens collected over a considerable period of time provide a good resource to study the impacts of climate change on plant morphological traits.</abstract><cop>UK</cop><pub>Oxford University Press</pub><doi>10.1093/jpe/rtz053</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1752-993X |
ispartof | Journal of plant ecology, 2020-02, Vol.13 (1), p.87-96 |
issn | 1752-993X 1752-9921 1752-993X |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A760969041 |
source | Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals |
subjects | Analysis Climatic changes Herbaria Identification and classification Influence Leaves Measurement Methods Spatial analysis (Statistics) |
title | Spatiotemporal variation in leaf size and shape in response to climate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20variation%20in%20leaf%20size%20and%20shape%20in%20response%20to%20climate&rft.jtitle=Journal%20of%20plant%20ecology&rft.au=Li,%20Yaoqi&rft.date=2020-02-01&rft.volume=13&rft.issue=1&rft.spage=87&rft.epage=96&rft.pages=87-96&rft.issn=1752-993X&rft.eissn=1752-993X&rft_id=info:doi/10.1093/jpe/rtz053&rft_dat=%3Cgale_cross%3EA760969041%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A760969041&rft_oup_id=10.1093/jpe/rtz053&rfr_iscdi=true |