A Becker–Döring Type Model for Cell Polarization

We propose a model for cell polarization based on the Becker–Döring equations with the first coagulation coefficient equal to zero. We show convergence to equilibrium for power-law coagulation and fragmentation rates and obtain a loss of mass in the limit t → ∞ depending on the initial mass and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2023-08, Vol.190 (8), Article 133
Hauptverfasser: Pohl, Lorena, Niethammer, Barbara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Journal of statistical physics
container_volume 190
creator Pohl, Lorena
Niethammer, Barbara
description We propose a model for cell polarization based on the Becker–Döring equations with the first coagulation coefficient equal to zero. We show convergence to equilibrium for power-law coagulation and fragmentation rates and obtain a loss of mass in the limit t → ∞ depending on the initial mass and the relative strengths of the coagulation and fragmentation processes. In the case of linear rates, we further show that large clusters evolve in a self-similar manner at large times by comparing limits of appropriately rescaled solutions in different spaces.
doi_str_mv 10.1007/s10955-023-03144-0
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A759337746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759337746</galeid><sourcerecordid>A759337746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-2012b4118e6afdf49490dd3093d5e5732ff65360fd81ce1878283eb8ff3faa173</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAVa5QMrYE8f2shQoSEWwKGvLTcZVShpXTlmUFXfgLlyAm3ASUsKCFRppZjTSG-k_xs45jDiAumg5GClTEJgC8ixL4YANuFQiNTnHwz_7MTtp2xUAGG3kgOE4uaTimeLX2_vV50esmmUy320ouQ8l1YkPMZlQXSePoXaxenXbKjSn7Mi7uqWz3zlkTzfX88ltOnuY3k3Gs7RAIbepAC4WGeeacudLn5nMQFkiGCwlSYXC-1xiDr7UvCCulRYaaaG9R-8cVzhko_7v0tVkq8aHbXRFVyWtqyI05KvuPlbSICqV5R0geqCIoW0jebuJ1drFneVg955s78l2nuyPp64PGfZQu9mnp2hX4SU2XbD_qG8AJGrT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Becker–Döring Type Model for Cell Polarization</title><source>SpringerLink Journals</source><creator>Pohl, Lorena ; Niethammer, Barbara</creator><creatorcontrib>Pohl, Lorena ; Niethammer, Barbara</creatorcontrib><description>We propose a model for cell polarization based on the Becker–Döring equations with the first coagulation coefficient equal to zero. We show convergence to equilibrium for power-law coagulation and fragmentation rates and obtain a loss of mass in the limit t → ∞ depending on the initial mass and the relative strengths of the coagulation and fragmentation processes. In the case of linear rates, we further show that large clusters evolve in a self-similar manner at large times by comparing limits of appropriately rescaled solutions in different spaces.</description><identifier>ISSN: 1572-9613</identifier><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-023-03144-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2023-08, Vol.190 (8), Article 133</ispartof><rights>The Author(s) 2023</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-2012b4118e6afdf49490dd3093d5e5732ff65360fd81ce1878283eb8ff3faa173</cites><orcidid>0000-0003-0092-4900 ; 0000-0001-9075-7442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-023-03144-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-023-03144-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Pohl, Lorena</creatorcontrib><creatorcontrib>Niethammer, Barbara</creatorcontrib><title>A Becker–Döring Type Model for Cell Polarization</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We propose a model for cell polarization based on the Becker–Döring equations with the first coagulation coefficient equal to zero. We show convergence to equilibrium for power-law coagulation and fragmentation rates and obtain a loss of mass in the limit t → ∞ depending on the initial mass and the relative strengths of the coagulation and fragmentation processes. In the case of linear rates, we further show that large clusters evolve in a self-similar manner at large times by comparing limits of appropriately rescaled solutions in different spaces.</description><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>1572-9613</issn><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEFOwzAQRS0EEqVwAVa5QMrYE8f2shQoSEWwKGvLTcZVShpXTlmUFXfgLlyAm3ASUsKCFRppZjTSG-k_xs45jDiAumg5GClTEJgC8ixL4YANuFQiNTnHwz_7MTtp2xUAGG3kgOE4uaTimeLX2_vV50esmmUy320ouQ8l1YkPMZlQXSePoXaxenXbKjSn7Mi7uqWz3zlkTzfX88ltOnuY3k3Gs7RAIbepAC4WGeeacudLn5nMQFkiGCwlSYXC-1xiDr7UvCCulRYaaaG9R-8cVzhko_7v0tVkq8aHbXRFVyWtqyI05KvuPlbSICqV5R0geqCIoW0jebuJ1drFneVg955s78l2nuyPp64PGfZQu9mnp2hX4SU2XbD_qG8AJGrT</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Pohl, Lorena</creator><creator>Niethammer, Barbara</creator><general>Springer US</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0092-4900</orcidid><orcidid>https://orcid.org/0000-0001-9075-7442</orcidid></search><sort><creationdate>20230801</creationdate><title>A Becker–Döring Type Model for Cell Polarization</title><author>Pohl, Lorena ; Niethammer, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-2012b4118e6afdf49490dd3093d5e5732ff65360fd81ce1878283eb8ff3faa173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pohl, Lorena</creatorcontrib><creatorcontrib>Niethammer, Barbara</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pohl, Lorena</au><au>Niethammer, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Becker–Döring Type Model for Cell Polarization</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>190</volume><issue>8</issue><artnum>133</artnum><issn>1572-9613</issn><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We propose a model for cell polarization based on the Becker–Döring equations with the first coagulation coefficient equal to zero. We show convergence to equilibrium for power-law coagulation and fragmentation rates and obtain a loss of mass in the limit t → ∞ depending on the initial mass and the relative strengths of the coagulation and fragmentation processes. In the case of linear rates, we further show that large clusters evolve in a self-similar manner at large times by comparing limits of appropriately rescaled solutions in different spaces.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-023-03144-0</doi><orcidid>https://orcid.org/0000-0003-0092-4900</orcidid><orcidid>https://orcid.org/0000-0001-9075-7442</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1572-9613
ispartof Journal of statistical physics, 2023-08, Vol.190 (8), Article 133
issn 1572-9613
0022-4715
1572-9613
language eng
recordid cdi_gale_infotracacademiconefile_A759337746
source SpringerLink Journals
subjects Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Theoretical
title A Becker–Döring Type Model for Cell Polarization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Becker%E2%80%93D%C3%B6ring%20Type%20Model%20for%20Cell%20Polarization&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Pohl,%20Lorena&rft.date=2023-08-01&rft.volume=190&rft.issue=8&rft.artnum=133&rft.issn=1572-9613&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-023-03144-0&rft_dat=%3Cgale_cross%3EA759337746%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A759337746&rfr_iscdi=true