A Becker–Döring Type Model for Cell Polarization

We propose a model for cell polarization based on the Becker–Döring equations with the first coagulation coefficient equal to zero. We show convergence to equilibrium for power-law coagulation and fragmentation rates and obtain a loss of mass in the limit t → ∞ depending on the initial mass and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2023-08, Vol.190 (8), Article 133
Hauptverfasser: Pohl, Lorena, Niethammer, Barbara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a model for cell polarization based on the Becker–Döring equations with the first coagulation coefficient equal to zero. We show convergence to equilibrium for power-law coagulation and fragmentation rates and obtain a loss of mass in the limit t → ∞ depending on the initial mass and the relative strengths of the coagulation and fragmentation processes. In the case of linear rates, we further show that large clusters evolve in a self-similar manner at large times by comparing limits of appropriately rescaled solutions in different spaces.
ISSN:1572-9613
0022-4715
1572-9613
DOI:10.1007/s10955-023-03144-0