Prediction of the Stock Market From Linguistic Phrases: A Deep Neural Network Approach
Automation of financial data collection, generation, accumulation, and interpretation for decision making may reduce volatility in the stock market and increase liquidity occasionally. Thus, future markets' prediction factoring in the sentiment of investors and algorithmic traders is an excitin...
Gespeichert in:
Veröffentlicht in: | Journal of database management 2023-01, Vol.34 (1), p.1-22 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of database management |
container_volume | 34 |
creator | Srivastava, Praveen Ranjan Eachempati, Prajwal |
description | Automation of financial data collection, generation, accumulation, and interpretation for decision making may reduce volatility in the stock market and increase liquidity occasionally. Thus, future markets' prediction factoring in the sentiment of investors and algorithmic traders is an exciting area for research with deep learning techniques emerging to understand the market and its future direction. The paper develops two FINBERT deep neural network models pre-trained on the financial phrase dataset, the first one to extract sentiment from the NSE market news. The second model is adopted to predict the stock market movement of NSE with the above sentiment, historical stock prices, return on investment, and risk as predictors. The accuracy is compared with RNN and LSTM and baseline machine learning classifiers like naïve bayes and support vector machine (SVM). The accuracy of the FINBERT model is found to out-perform the deep learning algorithms and above baseline machine learning classifiers thus justifying the importance of the FINBERT model in stock market prediction. |
doi_str_mv | 10.4018/JDM.322020 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A759221140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759221140</galeid><sourcerecordid>A759221140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-79a51f915f66e1792004e2d067a692a2f98c2b5d72feda0a12b5f8eea1a5476b3</originalsourceid><addsrcrecordid>eNptkd9r2zAQgM1oYW3al_0Fgr2NOTvJln_szTRrt5G0ha19FYp8ctQkVirJjP73VeNBWwgC3Ul8d4f0JcknCtMcaPXt92wxzRgDBh-SE8qzLK2AwlHModjnxcfk1PsHAMppyU6S-1uHrVHB2J5YTcIKyZ9g1ZospFtjIJfObsnc9N1gfDCK3K6c9Oi_k4bMEHfkGgcnNzGEf9atSbPbOSvV6iw51nLj8fx_nCR3lz_-XvxM5zdXvy6aeaqyvAppWUtOdU25LgqkZc0AcmQtFKUsaiaZrivFlrwtmcZWgqTxoCtESSXPy2KZTZLPY9849nFAH8SDHVwfRwpWQV5zCrx4pTq5QWF6bYOTamu8Ek3Ja8YozSFS6QGqwx7jC22P2sTrd_z0AB9Xi1ujDhZ8fVOwHLzp0cfNm24VfCcH79_jX0ZcOeu9Qy12zmylexIUxIttEW2L0XaEmxE2nXn9g1GssFpEsWIvVuzFHuiQZ88W-K68</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804951056</pqid></control><display><type>article</type><title>Prediction of the Stock Market From Linguistic Phrases: A Deep Neural Network Approach</title><source>Alma/SFX Local Collection</source><creator>Srivastava, Praveen Ranjan ; Eachempati, Prajwal</creator><creatorcontrib>Srivastava, Praveen Ranjan ; Eachempati, Prajwal</creatorcontrib><description>Automation of financial data collection, generation, accumulation, and interpretation for decision making may reduce volatility in the stock market and increase liquidity occasionally. Thus, future markets' prediction factoring in the sentiment of investors and algorithmic traders is an exciting area for research with deep learning techniques emerging to understand the market and its future direction. The paper develops two FINBERT deep neural network models pre-trained on the financial phrase dataset, the first one to extract sentiment from the NSE market news. The second model is adopted to predict the stock market movement of NSE with the above sentiment, historical stock prices, return on investment, and risk as predictors. The accuracy is compared with RNN and LSTM and baseline machine learning classifiers like naïve bayes and support vector machine (SVM). The accuracy of the FINBERT model is found to out-perform the deep learning algorithms and above baseline machine learning classifiers thus justifying the importance of the FINBERT model in stock market prediction.</description><identifier>ISSN: 1063-8016</identifier><identifier>EISSN: 1533-8010</identifier><identifier>DOI: 10.4018/JDM.322020</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; Classifiers ; Computational linguistics ; Data base management ; Data mining ; Decision making ; Deep learning ; Language processing ; Machine learning ; Natural language interfaces ; Neural networks ; Pricing ; Retail industry ; Return on investment ; Securities markets ; Stock markets ; Stocks ; Support vector machines</subject><ispartof>Journal of database management, 2023-01, Vol.34 (1), p.1-22</ispartof><rights>COPYRIGHT 2023 IGI Global</rights><rights>2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-79a51f915f66e1792004e2d067a692a2f98c2b5d72feda0a12b5f8eea1a5476b3</cites><orcidid>0000-0001-7467-5500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Srivastava, Praveen Ranjan</creatorcontrib><creatorcontrib>Eachempati, Prajwal</creatorcontrib><title>Prediction of the Stock Market From Linguistic Phrases: A Deep Neural Network Approach</title><title>Journal of database management</title><description>Automation of financial data collection, generation, accumulation, and interpretation for decision making may reduce volatility in the stock market and increase liquidity occasionally. Thus, future markets' prediction factoring in the sentiment of investors and algorithmic traders is an exciting area for research with deep learning techniques emerging to understand the market and its future direction. The paper develops two FINBERT deep neural network models pre-trained on the financial phrase dataset, the first one to extract sentiment from the NSE market news. The second model is adopted to predict the stock market movement of NSE with the above sentiment, historical stock prices, return on investment, and risk as predictors. The accuracy is compared with RNN and LSTM and baseline machine learning classifiers like naïve bayes and support vector machine (SVM). The accuracy of the FINBERT model is found to out-perform the deep learning algorithms and above baseline machine learning classifiers thus justifying the importance of the FINBERT model in stock market prediction.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Classifiers</subject><subject>Computational linguistics</subject><subject>Data base management</subject><subject>Data mining</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Language processing</subject><subject>Machine learning</subject><subject>Natural language interfaces</subject><subject>Neural networks</subject><subject>Pricing</subject><subject>Retail industry</subject><subject>Return on investment</subject><subject>Securities markets</subject><subject>Stock markets</subject><subject>Stocks</subject><subject>Support vector machines</subject><issn>1063-8016</issn><issn>1533-8010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkd9r2zAQgM1oYW3al_0Fgr2NOTvJln_szTRrt5G0ha19FYp8ctQkVirJjP73VeNBWwgC3Ul8d4f0JcknCtMcaPXt92wxzRgDBh-SE8qzLK2AwlHModjnxcfk1PsHAMppyU6S-1uHrVHB2J5YTcIKyZ9g1ZospFtjIJfObsnc9N1gfDCK3K6c9Oi_k4bMEHfkGgcnNzGEf9atSbPbOSvV6iw51nLj8fx_nCR3lz_-XvxM5zdXvy6aeaqyvAppWUtOdU25LgqkZc0AcmQtFKUsaiaZrivFlrwtmcZWgqTxoCtESSXPy2KZTZLPY9849nFAH8SDHVwfRwpWQV5zCrx4pTq5QWF6bYOTamu8Ek3Ja8YozSFS6QGqwx7jC22P2sTrd_z0AB9Xi1ujDhZ8fVOwHLzp0cfNm24VfCcH79_jX0ZcOeu9Qy12zmylexIUxIttEW2L0XaEmxE2nXn9g1GssFpEsWIvVuzFHuiQZ88W-K68</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Srivastava, Praveen Ranjan</creator><creator>Eachempati, Prajwal</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88K</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>M2T</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7467-5500</orcidid></search><sort><creationdate>20230101</creationdate><title>Prediction of the Stock Market From Linguistic Phrases: A Deep Neural Network Approach</title><author>Srivastava, Praveen Ranjan ; Eachempati, Prajwal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-79a51f915f66e1792004e2d067a692a2f98c2b5d72feda0a12b5f8eea1a5476b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Classifiers</topic><topic>Computational linguistics</topic><topic>Data base management</topic><topic>Data mining</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Language processing</topic><topic>Machine learning</topic><topic>Natural language interfaces</topic><topic>Neural networks</topic><topic>Pricing</topic><topic>Retail industry</topic><topic>Return on investment</topic><topic>Securities markets</topic><topic>Stock markets</topic><topic>Stocks</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srivastava, Praveen Ranjan</creatorcontrib><creatorcontrib>Eachempati, Prajwal</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of database management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srivastava, Praveen Ranjan</au><au>Eachempati, Prajwal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the Stock Market From Linguistic Phrases: A Deep Neural Network Approach</atitle><jtitle>Journal of database management</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>34</volume><issue>1</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>1063-8016</issn><eissn>1533-8010</eissn><abstract>Automation of financial data collection, generation, accumulation, and interpretation for decision making may reduce volatility in the stock market and increase liquidity occasionally. Thus, future markets' prediction factoring in the sentiment of investors and algorithmic traders is an exciting area for research with deep learning techniques emerging to understand the market and its future direction. The paper develops two FINBERT deep neural network models pre-trained on the financial phrase dataset, the first one to extract sentiment from the NSE market news. The second model is adopted to predict the stock market movement of NSE with the above sentiment, historical stock prices, return on investment, and risk as predictors. The accuracy is compared with RNN and LSTM and baseline machine learning classifiers like naïve bayes and support vector machine (SVM). The accuracy of the FINBERT model is found to out-perform the deep learning algorithms and above baseline machine learning classifiers thus justifying the importance of the FINBERT model in stock market prediction.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/JDM.322020</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-7467-5500</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-8016 |
ispartof | Journal of database management, 2023-01, Vol.34 (1), p.1-22 |
issn | 1063-8016 1533-8010 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A759221140 |
source | Alma/SFX Local Collection |
subjects | Accuracy Algorithms Artificial neural networks Classifiers Computational linguistics Data base management Data mining Decision making Deep learning Language processing Machine learning Natural language interfaces Neural networks Pricing Retail industry Return on investment Securities markets Stock markets Stocks Support vector machines |
title | Prediction of the Stock Market From Linguistic Phrases: A Deep Neural Network Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20Stock%20Market%20From%20Linguistic%20Phrases:%20A%20Deep%20Neural%20Network%20Approach&rft.jtitle=Journal%20of%20database%20management&rft.au=Srivastava,%20Praveen%20Ranjan&rft.date=2023-01-01&rft.volume=34&rft.issue=1&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=1063-8016&rft.eissn=1533-8010&rft_id=info:doi/10.4018/JDM.322020&rft_dat=%3Cgale_proqu%3EA759221140%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2804951056&rft_id=info:pmid/&rft_galeid=A759221140&rfr_iscdi=true |