On the Role of the Integrable Toda Model in One-Dimensional Molecular Dynamics

We prove that the common Mie–Lennard-Jones (MLJ) molecular potentials, appropriately normalized via an affine transformation, converge, in the limit of hard-core repulsion, to the Toda exponential potential. Correspondingly, any Fermi–Pasta–Ulam (FPU)-like Hamiltonian, with MLJ-type interparticle po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2023-07, Vol.190 (8), Article 131
Hauptverfasser: Benettin, Giancarlo, Orsatti, Giuseppe, Ponno, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Journal of statistical physics
container_volume 190
creator Benettin, Giancarlo
Orsatti, Giuseppe
Ponno, Antonio
description We prove that the common Mie–Lennard-Jones (MLJ) molecular potentials, appropriately normalized via an affine transformation, converge, in the limit of hard-core repulsion, to the Toda exponential potential. Correspondingly, any Fermi–Pasta–Ulam (FPU)-like Hamiltonian, with MLJ-type interparticle potential, turns out to be 1/ n -close to the Toda integrable Hamiltonian, n being the exponent ruling repulsion in the MLJ potential. This means that the dynamics of chains of particles interacting through typical molecular potentials, is close to integrable in an unexpected sense. Theoretical results are accompanied by a numerical illustration; numerics shows, in particular, that even the very standard 12–6 MLJ potential is closer to integrability than the FPU potentials which are more commonly used in the literature.
doi_str_mv 10.1007/s10955-023-03147-x
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A759007657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759007657</galeid><sourcerecordid>A759007657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-ddd2b565189101b24b321f4b7385b116798e3363fefa5a683cac541f80ccbc2c3</originalsourceid><addsrcrecordid>eNp9kEtPwzAMgCMEEmPwBzjlD2Tk0fRxnDYekwaV0DhHaeqMTl2Ckk7a_j1h5cCJky3bn2V_CN0zOmOUFg-R0UpKQrkgVLCsIMcLNGGy4KTKmbj8k1-jmxh3lNKqrOQEvdUOD5-A330P2NtzvnIDbINuUmXjW41ffQs97hyuHZBltwcXO-90nxo9mEOvA16enN53Jt6iK6v7CHe_cYo-nh43ixeyrp9Xi_maGMHlQNq25Y3MJSsrRlnDs0ZwZrOmEKVsGMuLqgQhcmHBaqnzUhhtZMZsSY1pDDdiimbj3q3uQXXO-iHoNKRbSGd4B7ZL9Xkhq2Qnl0UC-AiY4GMMYNVX6PY6nBSj6kehGhWqpFCdFapjgsQIxTTsthDUzh9C-jz-R30DI69zzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Role of the Integrable Toda Model in One-Dimensional Molecular Dynamics</title><source>SpringerLink Journals</source><creator>Benettin, Giancarlo ; Orsatti, Giuseppe ; Ponno, Antonio</creator><creatorcontrib>Benettin, Giancarlo ; Orsatti, Giuseppe ; Ponno, Antonio</creatorcontrib><description>We prove that the common Mie–Lennard-Jones (MLJ) molecular potentials, appropriately normalized via an affine transformation, converge, in the limit of hard-core repulsion, to the Toda exponential potential. Correspondingly, any Fermi–Pasta–Ulam (FPU)-like Hamiltonian, with MLJ-type interparticle potential, turns out to be 1/ n -close to the Toda integrable Hamiltonian, n being the exponent ruling repulsion in the MLJ potential. This means that the dynamics of chains of particles interacting through typical molecular potentials, is close to integrable in an unexpected sense. Theoretical results are accompanied by a numerical illustration; numerics shows, in particular, that even the very standard 12–6 MLJ potential is closer to integrability than the FPU potentials which are more commonly used in the literature.</description><identifier>ISSN: 1572-9613</identifier><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-023-03147-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Mathematical and Computational Physics ; Molecular dynamics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2023-07, Vol.190 (8), Article 131</ispartof><rights>The Author(s) 2023</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-ddd2b565189101b24b321f4b7385b116798e3363fefa5a683cac541f80ccbc2c3</cites><orcidid>0000-0002-2869-189X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-023-03147-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-023-03147-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Benettin, Giancarlo</creatorcontrib><creatorcontrib>Orsatti, Giuseppe</creatorcontrib><creatorcontrib>Ponno, Antonio</creatorcontrib><title>On the Role of the Integrable Toda Model in One-Dimensional Molecular Dynamics</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We prove that the common Mie–Lennard-Jones (MLJ) molecular potentials, appropriately normalized via an affine transformation, converge, in the limit of hard-core repulsion, to the Toda exponential potential. Correspondingly, any Fermi–Pasta–Ulam (FPU)-like Hamiltonian, with MLJ-type interparticle potential, turns out to be 1/ n -close to the Toda integrable Hamiltonian, n being the exponent ruling repulsion in the MLJ potential. This means that the dynamics of chains of particles interacting through typical molecular potentials, is close to integrable in an unexpected sense. Theoretical results are accompanied by a numerical illustration; numerics shows, in particular, that even the very standard 12–6 MLJ potential is closer to integrability than the FPU potentials which are more commonly used in the literature.</description><subject>Mathematical and Computational Physics</subject><subject>Molecular dynamics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>1572-9613</issn><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtPwzAMgCMEEmPwBzjlD2Tk0fRxnDYekwaV0DhHaeqMTl2Ckk7a_j1h5cCJky3bn2V_CN0zOmOUFg-R0UpKQrkgVLCsIMcLNGGy4KTKmbj8k1-jmxh3lNKqrOQEvdUOD5-A330P2NtzvnIDbINuUmXjW41ffQs97hyuHZBltwcXO-90nxo9mEOvA16enN53Jt6iK6v7CHe_cYo-nh43ixeyrp9Xi_maGMHlQNq25Y3MJSsrRlnDs0ZwZrOmEKVsGMuLqgQhcmHBaqnzUhhtZMZsSY1pDDdiimbj3q3uQXXO-iHoNKRbSGd4B7ZL9Xkhq2Qnl0UC-AiY4GMMYNVX6PY6nBSj6kehGhWqpFCdFapjgsQIxTTsthDUzh9C-jz-R30DI69zzA</recordid><startdate>20230729</startdate><enddate>20230729</enddate><creator>Benettin, Giancarlo</creator><creator>Orsatti, Giuseppe</creator><creator>Ponno, Antonio</creator><general>Springer US</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2869-189X</orcidid></search><sort><creationdate>20230729</creationdate><title>On the Role of the Integrable Toda Model in One-Dimensional Molecular Dynamics</title><author>Benettin, Giancarlo ; Orsatti, Giuseppe ; Ponno, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-ddd2b565189101b24b321f4b7385b116798e3363fefa5a683cac541f80ccbc2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Mathematical and Computational Physics</topic><topic>Molecular dynamics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benettin, Giancarlo</creatorcontrib><creatorcontrib>Orsatti, Giuseppe</creatorcontrib><creatorcontrib>Ponno, Antonio</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benettin, Giancarlo</au><au>Orsatti, Giuseppe</au><au>Ponno, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Role of the Integrable Toda Model in One-Dimensional Molecular Dynamics</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2023-07-29</date><risdate>2023</risdate><volume>190</volume><issue>8</issue><artnum>131</artnum><issn>1572-9613</issn><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We prove that the common Mie–Lennard-Jones (MLJ) molecular potentials, appropriately normalized via an affine transformation, converge, in the limit of hard-core repulsion, to the Toda exponential potential. Correspondingly, any Fermi–Pasta–Ulam (FPU)-like Hamiltonian, with MLJ-type interparticle potential, turns out to be 1/ n -close to the Toda integrable Hamiltonian, n being the exponent ruling repulsion in the MLJ potential. This means that the dynamics of chains of particles interacting through typical molecular potentials, is close to integrable in an unexpected sense. Theoretical results are accompanied by a numerical illustration; numerics shows, in particular, that even the very standard 12–6 MLJ potential is closer to integrability than the FPU potentials which are more commonly used in the literature.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-023-03147-x</doi><orcidid>https://orcid.org/0000-0002-2869-189X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1572-9613
ispartof Journal of statistical physics, 2023-07, Vol.190 (8), Article 131
issn 1572-9613
0022-4715
1572-9613
language eng
recordid cdi_gale_infotracacademiconefile_A759007657
source SpringerLink Journals
subjects Mathematical and Computational Physics
Molecular dynamics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Theoretical
title On the Role of the Integrable Toda Model in One-Dimensional Molecular Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Role%20of%20the%20Integrable%20Toda%20Model%20in%20One-Dimensional%20Molecular%20Dynamics&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Benettin,%20Giancarlo&rft.date=2023-07-29&rft.volume=190&rft.issue=8&rft.artnum=131&rft.issn=1572-9613&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-023-03147-x&rft_dat=%3Cgale_cross%3EA759007657%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A759007657&rfr_iscdi=true