On the Role of the Integrable Toda Model in One-Dimensional Molecular Dynamics
We prove that the common Mie–Lennard-Jones (MLJ) molecular potentials, appropriately normalized via an affine transformation, converge, in the limit of hard-core repulsion, to the Toda exponential potential. Correspondingly, any Fermi–Pasta–Ulam (FPU)-like Hamiltonian, with MLJ-type interparticle po...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2023-07, Vol.190 (8), Article 131 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Journal of statistical physics |
container_volume | 190 |
creator | Benettin, Giancarlo Orsatti, Giuseppe Ponno, Antonio |
description | We prove that the common Mie–Lennard-Jones (MLJ) molecular potentials, appropriately normalized via an affine transformation, converge, in the limit of hard-core repulsion, to the Toda exponential potential. Correspondingly, any Fermi–Pasta–Ulam (FPU)-like Hamiltonian, with MLJ-type interparticle potential, turns out to be 1/
n
-close to the Toda integrable Hamiltonian,
n
being the exponent ruling repulsion in the MLJ potential. This means that the dynamics of chains of particles interacting through typical molecular potentials, is close to integrable in an unexpected sense. Theoretical results are accompanied by a numerical illustration; numerics shows, in particular, that even the very standard 12–6 MLJ potential is closer to integrability than the FPU potentials which are more commonly used in the literature. |
doi_str_mv | 10.1007/s10955-023-03147-x |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A759007657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759007657</galeid><sourcerecordid>A759007657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-ddd2b565189101b24b321f4b7385b116798e3363fefa5a683cac541f80ccbc2c3</originalsourceid><addsrcrecordid>eNp9kEtPwzAMgCMEEmPwBzjlD2Tk0fRxnDYekwaV0DhHaeqMTl2Ckk7a_j1h5cCJky3bn2V_CN0zOmOUFg-R0UpKQrkgVLCsIMcLNGGy4KTKmbj8k1-jmxh3lNKqrOQEvdUOD5-A330P2NtzvnIDbINuUmXjW41ffQs97hyuHZBltwcXO-90nxo9mEOvA16enN53Jt6iK6v7CHe_cYo-nh43ixeyrp9Xi_maGMHlQNq25Y3MJSsrRlnDs0ZwZrOmEKVsGMuLqgQhcmHBaqnzUhhtZMZsSY1pDDdiimbj3q3uQXXO-iHoNKRbSGd4B7ZL9Xkhq2Qnl0UC-AiY4GMMYNVX6PY6nBSj6kehGhWqpFCdFapjgsQIxTTsthDUzh9C-jz-R30DI69zzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Role of the Integrable Toda Model in One-Dimensional Molecular Dynamics</title><source>SpringerLink Journals</source><creator>Benettin, Giancarlo ; Orsatti, Giuseppe ; Ponno, Antonio</creator><creatorcontrib>Benettin, Giancarlo ; Orsatti, Giuseppe ; Ponno, Antonio</creatorcontrib><description>We prove that the common Mie–Lennard-Jones (MLJ) molecular potentials, appropriately normalized via an affine transformation, converge, in the limit of hard-core repulsion, to the Toda exponential potential. Correspondingly, any Fermi–Pasta–Ulam (FPU)-like Hamiltonian, with MLJ-type interparticle potential, turns out to be 1/
n
-close to the Toda integrable Hamiltonian,
n
being the exponent ruling repulsion in the MLJ potential. This means that the dynamics of chains of particles interacting through typical molecular potentials, is close to integrable in an unexpected sense. Theoretical results are accompanied by a numerical illustration; numerics shows, in particular, that even the very standard 12–6 MLJ potential is closer to integrability than the FPU potentials which are more commonly used in the literature.</description><identifier>ISSN: 1572-9613</identifier><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-023-03147-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Mathematical and Computational Physics ; Molecular dynamics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2023-07, Vol.190 (8), Article 131</ispartof><rights>The Author(s) 2023</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-ddd2b565189101b24b321f4b7385b116798e3363fefa5a683cac541f80ccbc2c3</cites><orcidid>0000-0002-2869-189X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-023-03147-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-023-03147-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Benettin, Giancarlo</creatorcontrib><creatorcontrib>Orsatti, Giuseppe</creatorcontrib><creatorcontrib>Ponno, Antonio</creatorcontrib><title>On the Role of the Integrable Toda Model in One-Dimensional Molecular Dynamics</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We prove that the common Mie–Lennard-Jones (MLJ) molecular potentials, appropriately normalized via an affine transformation, converge, in the limit of hard-core repulsion, to the Toda exponential potential. Correspondingly, any Fermi–Pasta–Ulam (FPU)-like Hamiltonian, with MLJ-type interparticle potential, turns out to be 1/
n
-close to the Toda integrable Hamiltonian,
n
being the exponent ruling repulsion in the MLJ potential. This means that the dynamics of chains of particles interacting through typical molecular potentials, is close to integrable in an unexpected sense. Theoretical results are accompanied by a numerical illustration; numerics shows, in particular, that even the very standard 12–6 MLJ potential is closer to integrability than the FPU potentials which are more commonly used in the literature.</description><subject>Mathematical and Computational Physics</subject><subject>Molecular dynamics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>1572-9613</issn><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtPwzAMgCMEEmPwBzjlD2Tk0fRxnDYekwaV0DhHaeqMTl2Ckk7a_j1h5cCJky3bn2V_CN0zOmOUFg-R0UpKQrkgVLCsIMcLNGGy4KTKmbj8k1-jmxh3lNKqrOQEvdUOD5-A330P2NtzvnIDbINuUmXjW41ffQs97hyuHZBltwcXO-90nxo9mEOvA16enN53Jt6iK6v7CHe_cYo-nh43ixeyrp9Xi_maGMHlQNq25Y3MJSsrRlnDs0ZwZrOmEKVsGMuLqgQhcmHBaqnzUhhtZMZsSY1pDDdiimbj3q3uQXXO-iHoNKRbSGd4B7ZL9Xkhq2Qnl0UC-AiY4GMMYNVX6PY6nBSj6kehGhWqpFCdFapjgsQIxTTsthDUzh9C-jz-R30DI69zzA</recordid><startdate>20230729</startdate><enddate>20230729</enddate><creator>Benettin, Giancarlo</creator><creator>Orsatti, Giuseppe</creator><creator>Ponno, Antonio</creator><general>Springer US</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2869-189X</orcidid></search><sort><creationdate>20230729</creationdate><title>On the Role of the Integrable Toda Model in One-Dimensional Molecular Dynamics</title><author>Benettin, Giancarlo ; Orsatti, Giuseppe ; Ponno, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-ddd2b565189101b24b321f4b7385b116798e3363fefa5a683cac541f80ccbc2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Mathematical and Computational Physics</topic><topic>Molecular dynamics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benettin, Giancarlo</creatorcontrib><creatorcontrib>Orsatti, Giuseppe</creatorcontrib><creatorcontrib>Ponno, Antonio</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benettin, Giancarlo</au><au>Orsatti, Giuseppe</au><au>Ponno, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Role of the Integrable Toda Model in One-Dimensional Molecular Dynamics</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2023-07-29</date><risdate>2023</risdate><volume>190</volume><issue>8</issue><artnum>131</artnum><issn>1572-9613</issn><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We prove that the common Mie–Lennard-Jones (MLJ) molecular potentials, appropriately normalized via an affine transformation, converge, in the limit of hard-core repulsion, to the Toda exponential potential. Correspondingly, any Fermi–Pasta–Ulam (FPU)-like Hamiltonian, with MLJ-type interparticle potential, turns out to be 1/
n
-close to the Toda integrable Hamiltonian,
n
being the exponent ruling repulsion in the MLJ potential. This means that the dynamics of chains of particles interacting through typical molecular potentials, is close to integrable in an unexpected sense. Theoretical results are accompanied by a numerical illustration; numerics shows, in particular, that even the very standard 12–6 MLJ potential is closer to integrability than the FPU potentials which are more commonly used in the literature.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-023-03147-x</doi><orcidid>https://orcid.org/0000-0002-2869-189X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1572-9613 |
ispartof | Journal of statistical physics, 2023-07, Vol.190 (8), Article 131 |
issn | 1572-9613 0022-4715 1572-9613 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A759007657 |
source | SpringerLink Journals |
subjects | Mathematical and Computational Physics Molecular dynamics Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical Physics and Dynamical Systems Theoretical |
title | On the Role of the Integrable Toda Model in One-Dimensional Molecular Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Role%20of%20the%20Integrable%20Toda%20Model%20in%20One-Dimensional%20Molecular%20Dynamics&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Benettin,%20Giancarlo&rft.date=2023-07-29&rft.volume=190&rft.issue=8&rft.artnum=131&rft.issn=1572-9613&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-023-03147-x&rft_dat=%3Cgale_cross%3EA759007657%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A759007657&rfr_iscdi=true |