Tangled Cord of IFTTM/I[sub.4]
Fuzzy Topological Topographic Mapping (FTTM) is a mathematical model that consists of a set of homeomorphic topological spaces designed to solve the neuro magnetic inverse problem. A sequence of FTTM, denoted as FTTM[sub.n] , is an extension of FTTM that is arranged in a symmetrical form. The specia...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2023-06, Vol.11 (12) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Mathematics (Basel) |
container_volume | 11 |
creator | Shukor, Noorsufia Abd Ahmad, Tahir Abdullahi, Mujahid Idris, Amidora Awang, Siti Rahmah |
description | Fuzzy Topological Topographic Mapping (FTTM) is a mathematical model that consists of a set of homeomorphic topological spaces designed to solve the neuro magnetic inverse problem. A sequence of FTTM, denoted as FTTM[sub.n] , is an extension of FTTM that is arranged in a symmetrical form. The special characteristic of FTTM, namely the homeomorphisms between its components, allows the generation of new FTTM. Later, the FTTM[sub.n] can also be viewed as a graph. Previously, a group of researchers defined an assembly graph and utilized it to model a DNA recombination process. Some researchers then used this to introduce the concept of tangled cords for assembly graphs. In this paper, the tangled cord for FTTM[sub.4] is used to calculate the Eulerian paths. Furthermore, it is utilized to determine the least upper bound of the Hamiltonian paths of its assembly graph. Hence, this study verifies the conjecture made by Burns et al. |
doi_str_mv | 10.3390/math11122613 |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A758395239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758395239</galeid><sourcerecordid>A758395239</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A7583952393</originalsourceid><addsrcrecordid>eNpjYBAxNNAzNrY00M9NLMkwNDQ0MjIzNGZi4DQyMjLXNQdKsCCxORh4i4uzDIDA0tDYwsSSk0EuJDEvPSc1RcE5vyhFIT9NwdMtJMRX3zO6uDRJzySWh4E1LTGnOJUXSnMz6Lm5hjh76KYn5qTGZ-al5ZcUJSYDYUpqbmZyfl5qWiZQ3NHc1MLY0tTI2NKYZA0AUR457A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tangled Cord of IFTTM/I[sub.4]</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Shukor, Noorsufia Abd ; Ahmad, Tahir ; Abdullahi, Mujahid ; Idris, Amidora ; Awang, Siti Rahmah</creator><creatorcontrib>Shukor, Noorsufia Abd ; Ahmad, Tahir ; Abdullahi, Mujahid ; Idris, Amidora ; Awang, Siti Rahmah</creatorcontrib><description>Fuzzy Topological Topographic Mapping (FTTM) is a mathematical model that consists of a set of homeomorphic topological spaces designed to solve the neuro magnetic inverse problem. A sequence of FTTM, denoted as FTTM[sub.n] , is an extension of FTTM that is arranged in a symmetrical form. The special characteristic of FTTM, namely the homeomorphisms between its components, allows the generation of new FTTM. Later, the FTTM[sub.n] can also be viewed as a graph. Previously, a group of researchers defined an assembly graph and utilized it to model a DNA recombination process. Some researchers then used this to introduce the concept of tangled cords for assembly graphs. In this paper, the tangled cord for FTTM[sub.4] is used to calculate the Eulerian paths. Furthermore, it is utilized to determine the least upper bound of the Hamiltonian paths of its assembly graph. Hence, this study verifies the conjecture made by Burns et al.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math11122613</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Functions, Inverse ; Mappings (Mathematics) ; Mathematical research ; Topological spaces</subject><ispartof>Mathematics (Basel), 2023-06, Vol.11 (12)</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Shukor, Noorsufia Abd</creatorcontrib><creatorcontrib>Ahmad, Tahir</creatorcontrib><creatorcontrib>Abdullahi, Mujahid</creatorcontrib><creatorcontrib>Idris, Amidora</creatorcontrib><creatorcontrib>Awang, Siti Rahmah</creatorcontrib><title>Tangled Cord of IFTTM/I[sub.4]</title><title>Mathematics (Basel)</title><description>Fuzzy Topological Topographic Mapping (FTTM) is a mathematical model that consists of a set of homeomorphic topological spaces designed to solve the neuro magnetic inverse problem. A sequence of FTTM, denoted as FTTM[sub.n] , is an extension of FTTM that is arranged in a symmetrical form. The special characteristic of FTTM, namely the homeomorphisms between its components, allows the generation of new FTTM. Later, the FTTM[sub.n] can also be viewed as a graph. Previously, a group of researchers defined an assembly graph and utilized it to model a DNA recombination process. Some researchers then used this to introduce the concept of tangled cords for assembly graphs. In this paper, the tangled cord for FTTM[sub.4] is used to calculate the Eulerian paths. Furthermore, it is utilized to determine the least upper bound of the Hamiltonian paths of its assembly graph. Hence, this study verifies the conjecture made by Burns et al.</description><subject>Functions, Inverse</subject><subject>Mappings (Mathematics)</subject><subject>Mathematical research</subject><subject>Topological spaces</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYBAxNNAzNrY00M9NLMkwNDQ0MjIzNGZi4DQyMjLXNQdKsCCxORh4i4uzDIDA0tDYwsSSk0EuJDEvPSc1RcE5vyhFIT9NwdMtJMRX3zO6uDRJzySWh4E1LTGnOJUXSnMz6Lm5hjh76KYn5qTGZ-al5ZcUJSYDYUpqbmZyfl5qWiZQ3NHc1MLY0tTI2NKYZA0AUR457A</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Shukor, Noorsufia Abd</creator><creator>Ahmad, Tahir</creator><creator>Abdullahi, Mujahid</creator><creator>Idris, Amidora</creator><creator>Awang, Siti Rahmah</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20230601</creationdate><title>Tangled Cord of IFTTM/I[sub.4]</title><author>Shukor, Noorsufia Abd ; Ahmad, Tahir ; Abdullahi, Mujahid ; Idris, Amidora ; Awang, Siti Rahmah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A7583952393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Functions, Inverse</topic><topic>Mappings (Mathematics)</topic><topic>Mathematical research</topic><topic>Topological spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shukor, Noorsufia Abd</creatorcontrib><creatorcontrib>Ahmad, Tahir</creatorcontrib><creatorcontrib>Abdullahi, Mujahid</creatorcontrib><creatorcontrib>Idris, Amidora</creatorcontrib><creatorcontrib>Awang, Siti Rahmah</creatorcontrib><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shukor, Noorsufia Abd</au><au>Ahmad, Tahir</au><au>Abdullahi, Mujahid</au><au>Idris, Amidora</au><au>Awang, Siti Rahmah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tangled Cord of IFTTM/I[sub.4]</atitle><jtitle>Mathematics (Basel)</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>11</volume><issue>12</issue><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>Fuzzy Topological Topographic Mapping (FTTM) is a mathematical model that consists of a set of homeomorphic topological spaces designed to solve the neuro magnetic inverse problem. A sequence of FTTM, denoted as FTTM[sub.n] , is an extension of FTTM that is arranged in a symmetrical form. The special characteristic of FTTM, namely the homeomorphisms between its components, allows the generation of new FTTM. Later, the FTTM[sub.n] can also be viewed as a graph. Previously, a group of researchers defined an assembly graph and utilized it to model a DNA recombination process. Some researchers then used this to introduce the concept of tangled cords for assembly graphs. In this paper, the tangled cord for FTTM[sub.4] is used to calculate the Eulerian paths. Furthermore, it is utilized to determine the least upper bound of the Hamiltonian paths of its assembly graph. Hence, this study verifies the conjecture made by Burns et al.</abstract><pub>MDPI AG</pub><doi>10.3390/math11122613</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2023-06, Vol.11 (12) |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A758395239 |
source | DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Functions, Inverse Mappings (Mathematics) Mathematical research Topological spaces |
title | Tangled Cord of IFTTM/I[sub.4] |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A39%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tangled%20Cord%20of%20IFTTM/I%5Bsub.4%5D&rft.jtitle=Mathematics%20(Basel)&rft.au=Shukor,%20Noorsufia%20Abd&rft.date=2023-06-01&rft.volume=11&rft.issue=12&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math11122613&rft_dat=%3Cgale%3EA758395239%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A758395239&rfr_iscdi=true |