Tangled Cord of IFTTM/I[sub.4]

Fuzzy Topological Topographic Mapping (FTTM) is a mathematical model that consists of a set of homeomorphic topological spaces designed to solve the neuro magnetic inverse problem. A sequence of FTTM, denoted as FTTM[sub.n] , is an extension of FTTM that is arranged in a symmetrical form. The specia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-06, Vol.11 (12)
Hauptverfasser: Shukor, Noorsufia Abd, Ahmad, Tahir, Abdullahi, Mujahid, Idris, Amidora, Awang, Siti Rahmah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Mathematics (Basel)
container_volume 11
creator Shukor, Noorsufia Abd
Ahmad, Tahir
Abdullahi, Mujahid
Idris, Amidora
Awang, Siti Rahmah
description Fuzzy Topological Topographic Mapping (FTTM) is a mathematical model that consists of a set of homeomorphic topological spaces designed to solve the neuro magnetic inverse problem. A sequence of FTTM, denoted as FTTM[sub.n] , is an extension of FTTM that is arranged in a symmetrical form. The special characteristic of FTTM, namely the homeomorphisms between its components, allows the generation of new FTTM. Later, the FTTM[sub.n] can also be viewed as a graph. Previously, a group of researchers defined an assembly graph and utilized it to model a DNA recombination process. Some researchers then used this to introduce the concept of tangled cords for assembly graphs. In this paper, the tangled cord for FTTM[sub.4] is used to calculate the Eulerian paths. Furthermore, it is utilized to determine the least upper bound of the Hamiltonian paths of its assembly graph. Hence, this study verifies the conjecture made by Burns et al.
doi_str_mv 10.3390/math11122613
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A758395239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758395239</galeid><sourcerecordid>A758395239</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A7583952393</originalsourceid><addsrcrecordid>eNpjYBAxNNAzNrY00M9NLMkwNDQ0MjIzNGZi4DQyMjLXNQdKsCCxORh4i4uzDIDA0tDYwsSSk0EuJDEvPSc1RcE5vyhFIT9NwdMtJMRX3zO6uDRJzySWh4E1LTGnOJUXSnMz6Lm5hjh76KYn5qTGZ-al5ZcUJSYDYUpqbmZyfl5qWiZQ3NHc1MLY0tTI2NKYZA0AUR457A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tangled Cord of IFTTM/I[sub.4]</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Shukor, Noorsufia Abd ; Ahmad, Tahir ; Abdullahi, Mujahid ; Idris, Amidora ; Awang, Siti Rahmah</creator><creatorcontrib>Shukor, Noorsufia Abd ; Ahmad, Tahir ; Abdullahi, Mujahid ; Idris, Amidora ; Awang, Siti Rahmah</creatorcontrib><description>Fuzzy Topological Topographic Mapping (FTTM) is a mathematical model that consists of a set of homeomorphic topological spaces designed to solve the neuro magnetic inverse problem. A sequence of FTTM, denoted as FTTM[sub.n] , is an extension of FTTM that is arranged in a symmetrical form. The special characteristic of FTTM, namely the homeomorphisms between its components, allows the generation of new FTTM. Later, the FTTM[sub.n] can also be viewed as a graph. Previously, a group of researchers defined an assembly graph and utilized it to model a DNA recombination process. Some researchers then used this to introduce the concept of tangled cords for assembly graphs. In this paper, the tangled cord for FTTM[sub.4] is used to calculate the Eulerian paths. Furthermore, it is utilized to determine the least upper bound of the Hamiltonian paths of its assembly graph. Hence, this study verifies the conjecture made by Burns et al.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math11122613</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Functions, Inverse ; Mappings (Mathematics) ; Mathematical research ; Topological spaces</subject><ispartof>Mathematics (Basel), 2023-06, Vol.11 (12)</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Shukor, Noorsufia Abd</creatorcontrib><creatorcontrib>Ahmad, Tahir</creatorcontrib><creatorcontrib>Abdullahi, Mujahid</creatorcontrib><creatorcontrib>Idris, Amidora</creatorcontrib><creatorcontrib>Awang, Siti Rahmah</creatorcontrib><title>Tangled Cord of IFTTM/I[sub.4]</title><title>Mathematics (Basel)</title><description>Fuzzy Topological Topographic Mapping (FTTM) is a mathematical model that consists of a set of homeomorphic topological spaces designed to solve the neuro magnetic inverse problem. A sequence of FTTM, denoted as FTTM[sub.n] , is an extension of FTTM that is arranged in a symmetrical form. The special characteristic of FTTM, namely the homeomorphisms between its components, allows the generation of new FTTM. Later, the FTTM[sub.n] can also be viewed as a graph. Previously, a group of researchers defined an assembly graph and utilized it to model a DNA recombination process. Some researchers then used this to introduce the concept of tangled cords for assembly graphs. In this paper, the tangled cord for FTTM[sub.4] is used to calculate the Eulerian paths. Furthermore, it is utilized to determine the least upper bound of the Hamiltonian paths of its assembly graph. Hence, this study verifies the conjecture made by Burns et al.</description><subject>Functions, Inverse</subject><subject>Mappings (Mathematics)</subject><subject>Mathematical research</subject><subject>Topological spaces</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYBAxNNAzNrY00M9NLMkwNDQ0MjIzNGZi4DQyMjLXNQdKsCCxORh4i4uzDIDA0tDYwsSSk0EuJDEvPSc1RcE5vyhFIT9NwdMtJMRX3zO6uDRJzySWh4E1LTGnOJUXSnMz6Lm5hjh76KYn5qTGZ-al5ZcUJSYDYUpqbmZyfl5qWiZQ3NHc1MLY0tTI2NKYZA0AUR457A</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Shukor, Noorsufia Abd</creator><creator>Ahmad, Tahir</creator><creator>Abdullahi, Mujahid</creator><creator>Idris, Amidora</creator><creator>Awang, Siti Rahmah</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20230601</creationdate><title>Tangled Cord of IFTTM/I[sub.4]</title><author>Shukor, Noorsufia Abd ; Ahmad, Tahir ; Abdullahi, Mujahid ; Idris, Amidora ; Awang, Siti Rahmah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A7583952393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Functions, Inverse</topic><topic>Mappings (Mathematics)</topic><topic>Mathematical research</topic><topic>Topological spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shukor, Noorsufia Abd</creatorcontrib><creatorcontrib>Ahmad, Tahir</creatorcontrib><creatorcontrib>Abdullahi, Mujahid</creatorcontrib><creatorcontrib>Idris, Amidora</creatorcontrib><creatorcontrib>Awang, Siti Rahmah</creatorcontrib><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shukor, Noorsufia Abd</au><au>Ahmad, Tahir</au><au>Abdullahi, Mujahid</au><au>Idris, Amidora</au><au>Awang, Siti Rahmah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tangled Cord of IFTTM/I[sub.4]</atitle><jtitle>Mathematics (Basel)</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>11</volume><issue>12</issue><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>Fuzzy Topological Topographic Mapping (FTTM) is a mathematical model that consists of a set of homeomorphic topological spaces designed to solve the neuro magnetic inverse problem. A sequence of FTTM, denoted as FTTM[sub.n] , is an extension of FTTM that is arranged in a symmetrical form. The special characteristic of FTTM, namely the homeomorphisms between its components, allows the generation of new FTTM. Later, the FTTM[sub.n] can also be viewed as a graph. Previously, a group of researchers defined an assembly graph and utilized it to model a DNA recombination process. Some researchers then used this to introduce the concept of tangled cords for assembly graphs. In this paper, the tangled cord for FTTM[sub.4] is used to calculate the Eulerian paths. Furthermore, it is utilized to determine the least upper bound of the Hamiltonian paths of its assembly graph. Hence, this study verifies the conjecture made by Burns et al.</abstract><pub>MDPI AG</pub><doi>10.3390/math11122613</doi></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2023-06, Vol.11 (12)
issn 2227-7390
2227-7390
language eng
recordid cdi_gale_infotracacademiconefile_A758395239
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Functions, Inverse
Mappings (Mathematics)
Mathematical research
Topological spaces
title Tangled Cord of IFTTM/I[sub.4]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A39%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tangled%20Cord%20of%20IFTTM/I%5Bsub.4%5D&rft.jtitle=Mathematics%20(Basel)&rft.au=Shukor,%20Noorsufia%20Abd&rft.date=2023-06-01&rft.volume=11&rft.issue=12&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math11122613&rft_dat=%3Cgale%3EA758395239%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A758395239&rfr_iscdi=true