On Is/I-Convexity of Dual Simpson Type Integral Inequalities

Integral inequalities are a powerful tool for estimating errors of quadrature formulas. In this study, some symmetric dual Simpson type integral inequalities for the classes of s-convex, bounded and Lipschitzian functions are proposed. The obtained results are based on a new identity and the use of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2023-03, Vol.15 (3)
Hauptverfasser: Chiheb, Tarek, Boulares, Hamid, Imsatfia, Moheddine, Meftah, Badreddine, Moumen, Abdelkader
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Symmetry (Basel)
container_volume 15
creator Chiheb, Tarek
Boulares, Hamid
Imsatfia, Moheddine
Meftah, Badreddine
Moumen, Abdelkader
description Integral inequalities are a powerful tool for estimating errors of quadrature formulas. In this study, some symmetric dual Simpson type integral inequalities for the classes of s-convex, bounded and Lipschitzian functions are proposed. The obtained results are based on a new identity and the use of some standard techniques such as Hölder as well as power mean inequalities. We give at the end some applications to the estimation of quadrature rules and to particular means.
doi_str_mv 10.3390/sym15030733
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A752149064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752149064</galeid><sourcerecordid>A752149064</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A7521490643</originalsourceid><addsrcrecordid>eNqVi7EOgjAYhBujiUSZfIG-AFhoC5K4GNTI5CC7afAvqYEWKRp5ezs4uHo33OW7HEKriISUZmRtxzbihJKU0gnyYpfBJsvY9KfPkW_tnThxwllCPLQ9a1zYdRHkRr_grYYRG4n3T9Hgi2o7azQuxw5woQeoe0cLDQ-3qkGBXaKZFI0F_5sLFB4PZX4KatHAVWlphl5UzjdoVWU0SOX4LuVxxDKSMPr34QPA00Wd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Is/I-Convexity of Dual Simpson Type Integral Inequalities</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chiheb, Tarek ; Boulares, Hamid ; Imsatfia, Moheddine ; Meftah, Badreddine ; Moumen, Abdelkader</creator><creatorcontrib>Chiheb, Tarek ; Boulares, Hamid ; Imsatfia, Moheddine ; Meftah, Badreddine ; Moumen, Abdelkader</creatorcontrib><description>Integral inequalities are a powerful tool for estimating errors of quadrature formulas. In this study, some symmetric dual Simpson type integral inequalities for the classes of s-convex, bounded and Lipschitzian functions are proposed. The obtained results are based on a new identity and the use of some standard techniques such as Hölder as well as power mean inequalities. We give at the end some applications to the estimation of quadrature rules and to particular means.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym15030733</identifier><language>eng</language><publisher>MDPI AG</publisher><ispartof>Symmetry (Basel), 2023-03, Vol.15 (3)</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Chiheb, Tarek</creatorcontrib><creatorcontrib>Boulares, Hamid</creatorcontrib><creatorcontrib>Imsatfia, Moheddine</creatorcontrib><creatorcontrib>Meftah, Badreddine</creatorcontrib><creatorcontrib>Moumen, Abdelkader</creatorcontrib><title>On Is/I-Convexity of Dual Simpson Type Integral Inequalities</title><title>Symmetry (Basel)</title><description>Integral inequalities are a powerful tool for estimating errors of quadrature formulas. In this study, some symmetric dual Simpson type integral inequalities for the classes of s-convex, bounded and Lipschitzian functions are proposed. The obtained results are based on a new identity and the use of some standard techniques such as Hölder as well as power mean inequalities. We give at the end some applications to the estimation of quadrature rules and to particular means.</description><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVi7EOgjAYhBujiUSZfIG-AFhoC5K4GNTI5CC7afAvqYEWKRp5ezs4uHo33OW7HEKriISUZmRtxzbihJKU0gnyYpfBJsvY9KfPkW_tnThxwllCPLQ9a1zYdRHkRr_grYYRG4n3T9Hgi2o7azQuxw5woQeoe0cLDQ-3qkGBXaKZFI0F_5sLFB4PZX4KatHAVWlphl5UzjdoVWU0SOX4LuVxxDKSMPr34QPA00Wd</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Chiheb, Tarek</creator><creator>Boulares, Hamid</creator><creator>Imsatfia, Moheddine</creator><creator>Meftah, Badreddine</creator><creator>Moumen, Abdelkader</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20230301</creationdate><title>On Is/I-Convexity of Dual Simpson Type Integral Inequalities</title><author>Chiheb, Tarek ; Boulares, Hamid ; Imsatfia, Moheddine ; Meftah, Badreddine ; Moumen, Abdelkader</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A7521490643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiheb, Tarek</creatorcontrib><creatorcontrib>Boulares, Hamid</creatorcontrib><creatorcontrib>Imsatfia, Moheddine</creatorcontrib><creatorcontrib>Meftah, Badreddine</creatorcontrib><creatorcontrib>Moumen, Abdelkader</creatorcontrib><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiheb, Tarek</au><au>Boulares, Hamid</au><au>Imsatfia, Moheddine</au><au>Meftah, Badreddine</au><au>Moumen, Abdelkader</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Is/I-Convexity of Dual Simpson Type Integral Inequalities</atitle><jtitle>Symmetry (Basel)</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>15</volume><issue>3</issue><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>Integral inequalities are a powerful tool for estimating errors of quadrature formulas. In this study, some symmetric dual Simpson type integral inequalities for the classes of s-convex, bounded and Lipschitzian functions are proposed. The obtained results are based on a new identity and the use of some standard techniques such as Hölder as well as power mean inequalities. We give at the end some applications to the estimation of quadrature rules and to particular means.</abstract><pub>MDPI AG</pub><doi>10.3390/sym15030733</doi></addata></record>
fulltext fulltext
identifier ISSN: 2073-8994
ispartof Symmetry (Basel), 2023-03, Vol.15 (3)
issn 2073-8994
2073-8994
language eng
recordid cdi_gale_infotracacademiconefile_A752149064
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
title On Is/I-Convexity of Dual Simpson Type Integral Inequalities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Is/I-Convexity%20of%20Dual%20Simpson%20Type%20Integral%20Inequalities&rft.jtitle=Symmetry%20(Basel)&rft.au=Chiheb,%20Tarek&rft.date=2023-03-01&rft.volume=15&rft.issue=3&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym15030733&rft_dat=%3Cgale%3EA752149064%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A752149064&rfr_iscdi=true