On Is/I-Convexity of Dual Simpson Type Integral Inequalities
Integral inequalities are a powerful tool for estimating errors of quadrature formulas. In this study, some symmetric dual Simpson type integral inequalities for the classes of s-convex, bounded and Lipschitzian functions are proposed. The obtained results are based on a new identity and the use of...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2023-03, Vol.15 (3) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Symmetry (Basel) |
container_volume | 15 |
creator | Chiheb, Tarek Boulares, Hamid Imsatfia, Moheddine Meftah, Badreddine Moumen, Abdelkader |
description | Integral inequalities are a powerful tool for estimating errors of quadrature formulas. In this study, some symmetric dual Simpson type integral inequalities for the classes of s-convex, bounded and Lipschitzian functions are proposed. The obtained results are based on a new identity and the use of some standard techniques such as Hölder as well as power mean inequalities. We give at the end some applications to the estimation of quadrature rules and to particular means. |
doi_str_mv | 10.3390/sym15030733 |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A752149064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752149064</galeid><sourcerecordid>A752149064</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A7521490643</originalsourceid><addsrcrecordid>eNqVi7EOgjAYhBujiUSZfIG-AFhoC5K4GNTI5CC7afAvqYEWKRp5ezs4uHo33OW7HEKriISUZmRtxzbihJKU0gnyYpfBJsvY9KfPkW_tnThxwllCPLQ9a1zYdRHkRr_grYYRG4n3T9Hgi2o7azQuxw5woQeoe0cLDQ-3qkGBXaKZFI0F_5sLFB4PZX4KatHAVWlphl5UzjdoVWU0SOX4LuVxxDKSMPr34QPA00Wd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Is/I-Convexity of Dual Simpson Type Integral Inequalities</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chiheb, Tarek ; Boulares, Hamid ; Imsatfia, Moheddine ; Meftah, Badreddine ; Moumen, Abdelkader</creator><creatorcontrib>Chiheb, Tarek ; Boulares, Hamid ; Imsatfia, Moheddine ; Meftah, Badreddine ; Moumen, Abdelkader</creatorcontrib><description>Integral inequalities are a powerful tool for estimating errors of quadrature formulas. In this study, some symmetric dual Simpson type integral inequalities for the classes of s-convex, bounded and Lipschitzian functions are proposed. The obtained results are based on a new identity and the use of some standard techniques such as Hölder as well as power mean inequalities. We give at the end some applications to the estimation of quadrature rules and to particular means.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym15030733</identifier><language>eng</language><publisher>MDPI AG</publisher><ispartof>Symmetry (Basel), 2023-03, Vol.15 (3)</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Chiheb, Tarek</creatorcontrib><creatorcontrib>Boulares, Hamid</creatorcontrib><creatorcontrib>Imsatfia, Moheddine</creatorcontrib><creatorcontrib>Meftah, Badreddine</creatorcontrib><creatorcontrib>Moumen, Abdelkader</creatorcontrib><title>On Is/I-Convexity of Dual Simpson Type Integral Inequalities</title><title>Symmetry (Basel)</title><description>Integral inequalities are a powerful tool for estimating errors of quadrature formulas. In this study, some symmetric dual Simpson type integral inequalities for the classes of s-convex, bounded and Lipschitzian functions are proposed. The obtained results are based on a new identity and the use of some standard techniques such as Hölder as well as power mean inequalities. We give at the end some applications to the estimation of quadrature rules and to particular means.</description><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVi7EOgjAYhBujiUSZfIG-AFhoC5K4GNTI5CC7afAvqYEWKRp5ezs4uHo33OW7HEKriISUZmRtxzbihJKU0gnyYpfBJsvY9KfPkW_tnThxwllCPLQ9a1zYdRHkRr_grYYRG4n3T9Hgi2o7azQuxw5woQeoe0cLDQ-3qkGBXaKZFI0F_5sLFB4PZX4KatHAVWlphl5UzjdoVWU0SOX4LuVxxDKSMPr34QPA00Wd</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Chiheb, Tarek</creator><creator>Boulares, Hamid</creator><creator>Imsatfia, Moheddine</creator><creator>Meftah, Badreddine</creator><creator>Moumen, Abdelkader</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20230301</creationdate><title>On Is/I-Convexity of Dual Simpson Type Integral Inequalities</title><author>Chiheb, Tarek ; Boulares, Hamid ; Imsatfia, Moheddine ; Meftah, Badreddine ; Moumen, Abdelkader</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A7521490643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiheb, Tarek</creatorcontrib><creatorcontrib>Boulares, Hamid</creatorcontrib><creatorcontrib>Imsatfia, Moheddine</creatorcontrib><creatorcontrib>Meftah, Badreddine</creatorcontrib><creatorcontrib>Moumen, Abdelkader</creatorcontrib><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiheb, Tarek</au><au>Boulares, Hamid</au><au>Imsatfia, Moheddine</au><au>Meftah, Badreddine</au><au>Moumen, Abdelkader</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Is/I-Convexity of Dual Simpson Type Integral Inequalities</atitle><jtitle>Symmetry (Basel)</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>15</volume><issue>3</issue><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>Integral inequalities are a powerful tool for estimating errors of quadrature formulas. In this study, some symmetric dual Simpson type integral inequalities for the classes of s-convex, bounded and Lipschitzian functions are proposed. The obtained results are based on a new identity and the use of some standard techniques such as Hölder as well as power mean inequalities. We give at the end some applications to the estimation of quadrature rules and to particular means.</abstract><pub>MDPI AG</pub><doi>10.3390/sym15030733</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2023-03, Vol.15 (3) |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A752149064 |
source | DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
title | On Is/I-Convexity of Dual Simpson Type Integral Inequalities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Is/I-Convexity%20of%20Dual%20Simpson%20Type%20Integral%20Inequalities&rft.jtitle=Symmetry%20(Basel)&rft.au=Chiheb,%20Tarek&rft.date=2023-03-01&rft.volume=15&rft.issue=3&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym15030733&rft_dat=%3Cgale%3EA752149064%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A752149064&rfr_iscdi=true |