Lignin Hydrogenolysis over Bimetallic Ni–Ru Nanoparticles Supported on SiO[sub.2]@HPS
Lignin obtained by hydrogenolysis of lignocellulose biomass is a prospective source of valuable green fuels and chemicals such as monophenols. One of the key factors in the chemical decomposition of lignin to monophenols is an efficient catalyst. Inert porous materials such as hypercrosslinked polym...
Gespeichert in:
Veröffentlicht in: | Catalysts 2023-05, Vol.13 (5) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lignin obtained by hydrogenolysis of lignocellulose biomass is a prospective source of valuable green fuels and chemicals such as monophenols. One of the key factors in the chemical decomposition of lignin to monophenols is an efficient catalyst. Inert porous materials such as hypercrosslinked polymers are suitable catalytic supports for the immobilization of noble and transition metal nanoparticles. However, such polymers do not have acidic properties, which are crucial for catalyzing hydrolysis. In this work, we report novel, efficient catalysts for lignin hydrogenolysis to produce valuable monophenolic compounds. The synthesized catalysts contained Ni, Ru, and Ni–Ru nanoparticles supported on SiO[sub.2] -coated hypercrosslinked polystyrene (SiO[sub.2] @HPS). Ni-Ru/SiO[sub.2] @HPS demonstrated remarkable stability without any loss of the metallic phase and a high yield of monophenols (>42 wt.%) at close to full lignin conversion (>95 wt.%). This result was attributed to the synergy between the two metals and the support’s surface acidity. All catalysts were fully characterized by a series of physico-chemical methods. |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal13050856 |