Automated, high-throughput image calibration for parallel-laser photogrammetry
Parallel-laser photogrammetry is growing in popularity as a way to collect non-invasive body size data from wild mammals. Despite its many appeals, this method requires researchers to hand-measure (i) the pixel distance between the parallel laser spots (inter-laser distance) to produce a scale withi...
Gespeichert in:
Veröffentlicht in: | Mammalian biology : Zeitschrift für Säugetierkunde 2022-06, Vol.102 (3), p.615-627 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 627 |
---|---|
container_issue | 3 |
container_start_page | 615 |
container_title | Mammalian biology : Zeitschrift für Säugetierkunde |
container_volume | 102 |
creator | Richardson, Jack L. Levy, Emily J. Ranjithkumar, Riddhi Yang, Huichun Monson, Eric Cronin, Arthur Galbany, Jordi Robbins, Martha M. Alberts, Susan C. Reeves, Mark E. McFarlin, Shannon C. |
description | Parallel-laser photogrammetry is growing in popularity as a way to collect non-invasive body size data from wild mammals. Despite its many appeals, this method requires researchers to hand-measure (i) the pixel distance between the parallel laser spots (inter-laser distance) to produce a scale within the image, and (ii) the pixel distance between the study subject’s body landmarks (inter-landmark distance). This manual effort is time-consuming and introduces human error: a researcher measuring the same image twice will rarely return the same values both times (resulting in within-observer error), as is also the case when two researchers measure the same image (resulting in between-observer error). Here, we present two independent methods that automate the inter-laser distance measurement of parallel-laser photogrammetry images. One method uses machine learning and image processing techniques in Python, and the other uses image processing techniques in
ImageJ
. Both of these methods reduce labor and increase precision without sacrificing accuracy. We first introduce the workflow of the two methods. Then, using two parallel-laser datasets of wild mountain gorilla and wild savannah baboon images, we validate the precision of these two automated methods relative to manual measurements and to each other. We also estimate the reduction of variation in final body size estimates in centimeters when adopting these automated methods, as these methods have no human error. Finally, we highlight the strengths of each method, suggest best practices for adopting either of them, and propose future directions for the automation of parallel-laser photogrammetry data. |
doi_str_mv | 10.1007/s42991-021-00174-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A734959206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A734959206</galeid><sourcerecordid>A734959206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-7367051a57380d6305ee2db1041d71b64eda6ac3fc633dc7b5ff14bd194ce0313</originalsourceid><addsrcrecordid>eNp9kEtqwzAQhkVpoWnaC3TlA1StZL3iZQh9QSCbdi1kPWwH2zKSvMhtepaerGrcdRmGGYb_G_h_AO4xesQIiadIy6rCEJW5ERYUiguwwhxvIKaCX553Dhmi4hrcxHhEWckQW4HDdk5-UMmah6LtmhamNvi5aac5Fd2gGlto1Xd1UKnzY-F8KCYVVN_bHvYq2vD9NbU--SaoYbApnG7BlVN9tHd_cw0-X54_dm9wf3h93233UBOCEhSEC8SwYoJskOEEMWtLU2NEsRG45tQaxZUmTnNCjBY1cw7T2uCKaosIJmvwuPxtVG9lNzqfgtK5jB067UfrunzfCkIrVpWIZ6BcAB18jME6OYVsMJwkRvI3Q7lkKHMy8pyhFBkiCxSzeGxskEc_hzEb-4_6AZredlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automated, high-throughput image calibration for parallel-laser photogrammetry</title><source>SpringerLink Journals - AutoHoldings</source><creator>Richardson, Jack L. ; Levy, Emily J. ; Ranjithkumar, Riddhi ; Yang, Huichun ; Monson, Eric ; Cronin, Arthur ; Galbany, Jordi ; Robbins, Martha M. ; Alberts, Susan C. ; Reeves, Mark E. ; McFarlin, Shannon C.</creator><creatorcontrib>Richardson, Jack L. ; Levy, Emily J. ; Ranjithkumar, Riddhi ; Yang, Huichun ; Monson, Eric ; Cronin, Arthur ; Galbany, Jordi ; Robbins, Martha M. ; Alberts, Susan C. ; Reeves, Mark E. ; McFarlin, Shannon C.</creatorcontrib><description>Parallel-laser photogrammetry is growing in popularity as a way to collect non-invasive body size data from wild mammals. Despite its many appeals, this method requires researchers to hand-measure (i) the pixel distance between the parallel laser spots (inter-laser distance) to produce a scale within the image, and (ii) the pixel distance between the study subject’s body landmarks (inter-landmark distance). This manual effort is time-consuming and introduces human error: a researcher measuring the same image twice will rarely return the same values both times (resulting in within-observer error), as is also the case when two researchers measure the same image (resulting in between-observer error). Here, we present two independent methods that automate the inter-laser distance measurement of parallel-laser photogrammetry images. One method uses machine learning and image processing techniques in Python, and the other uses image processing techniques in
ImageJ
. Both of these methods reduce labor and increase precision without sacrificing accuracy. We first introduce the workflow of the two methods. Then, using two parallel-laser datasets of wild mountain gorilla and wild savannah baboon images, we validate the precision of these two automated methods relative to manual measurements and to each other. We also estimate the reduction of variation in final body size estimates in centimeters when adopting these automated methods, as these methods have no human error. Finally, we highlight the strengths of each method, suggest best practices for adopting either of them, and propose future directions for the automation of parallel-laser photogrammetry data.</description><identifier>ISSN: 1616-5047</identifier><identifier>EISSN: 1618-1476</identifier><identifier>DOI: 10.1007/s42991-021-00174-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animal Anatomy ; Animal Ecology ; Animal Systematics/Taxonomy/Biogeography ; Automation ; Biomedical and Life Sciences ; Equipment and supplies ; Evolutionary Biology ; Fish & Wildlife Biology & Management ; Gorillas ; Histology ; Image processing ; Life Sciences ; Machine learning ; Mechanization ; Morphology ; Novel Field Techniques ; Zoology</subject><ispartof>Mammalian biology : Zeitschrift für Säugetierkunde, 2022-06, Vol.102 (3), p.615-627</ispartof><rights>The Author(s) under exclusive licence to Deutsche Gesellschaft für Säugetierkunde 2022. corrected publication 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-7367051a57380d6305ee2db1041d71b64eda6ac3fc633dc7b5ff14bd194ce0313</citedby><cites>FETCH-LOGICAL-c330t-7367051a57380d6305ee2db1041d71b64eda6ac3fc633dc7b5ff14bd194ce0313</cites><orcidid>0000-0002-8182-9456 ; 0000-0001-6724-3451 ; 0000-0002-1313-488X ; 0000-0003-3411-1297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42991-021-00174-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s42991-021-00174-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Richardson, Jack L.</creatorcontrib><creatorcontrib>Levy, Emily J.</creatorcontrib><creatorcontrib>Ranjithkumar, Riddhi</creatorcontrib><creatorcontrib>Yang, Huichun</creatorcontrib><creatorcontrib>Monson, Eric</creatorcontrib><creatorcontrib>Cronin, Arthur</creatorcontrib><creatorcontrib>Galbany, Jordi</creatorcontrib><creatorcontrib>Robbins, Martha M.</creatorcontrib><creatorcontrib>Alberts, Susan C.</creatorcontrib><creatorcontrib>Reeves, Mark E.</creatorcontrib><creatorcontrib>McFarlin, Shannon C.</creatorcontrib><title>Automated, high-throughput image calibration for parallel-laser photogrammetry</title><title>Mammalian biology : Zeitschrift für Säugetierkunde</title><addtitle>Mamm Biol</addtitle><description>Parallel-laser photogrammetry is growing in popularity as a way to collect non-invasive body size data from wild mammals. Despite its many appeals, this method requires researchers to hand-measure (i) the pixel distance between the parallel laser spots (inter-laser distance) to produce a scale within the image, and (ii) the pixel distance between the study subject’s body landmarks (inter-landmark distance). This manual effort is time-consuming and introduces human error: a researcher measuring the same image twice will rarely return the same values both times (resulting in within-observer error), as is also the case when two researchers measure the same image (resulting in between-observer error). Here, we present two independent methods that automate the inter-laser distance measurement of parallel-laser photogrammetry images. One method uses machine learning and image processing techniques in Python, and the other uses image processing techniques in
ImageJ
. Both of these methods reduce labor and increase precision without sacrificing accuracy. We first introduce the workflow of the two methods. Then, using two parallel-laser datasets of wild mountain gorilla and wild savannah baboon images, we validate the precision of these two automated methods relative to manual measurements and to each other. We also estimate the reduction of variation in final body size estimates in centimeters when adopting these automated methods, as these methods have no human error. Finally, we highlight the strengths of each method, suggest best practices for adopting either of them, and propose future directions for the automation of parallel-laser photogrammetry data.</description><subject>Animal Anatomy</subject><subject>Animal Ecology</subject><subject>Animal Systematics/Taxonomy/Biogeography</subject><subject>Automation</subject><subject>Biomedical and Life Sciences</subject><subject>Equipment and supplies</subject><subject>Evolutionary Biology</subject><subject>Fish & Wildlife Biology & Management</subject><subject>Gorillas</subject><subject>Histology</subject><subject>Image processing</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Mechanization</subject><subject>Morphology</subject><subject>Novel Field Techniques</subject><subject>Zoology</subject><issn>1616-5047</issn><issn>1618-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtqwzAQhkVpoWnaC3TlA1StZL3iZQh9QSCbdi1kPWwH2zKSvMhtepaerGrcdRmGGYb_G_h_AO4xesQIiadIy6rCEJW5ERYUiguwwhxvIKaCX553Dhmi4hrcxHhEWckQW4HDdk5-UMmah6LtmhamNvi5aac5Fd2gGlto1Xd1UKnzY-F8KCYVVN_bHvYq2vD9NbU--SaoYbApnG7BlVN9tHd_cw0-X54_dm9wf3h93233UBOCEhSEC8SwYoJskOEEMWtLU2NEsRG45tQaxZUmTnNCjBY1cw7T2uCKaosIJmvwuPxtVG9lNzqfgtK5jB067UfrunzfCkIrVpWIZ6BcAB18jME6OYVsMJwkRvI3Q7lkKHMy8pyhFBkiCxSzeGxskEc_hzEb-4_6AZredlA</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Richardson, Jack L.</creator><creator>Levy, Emily J.</creator><creator>Ranjithkumar, Riddhi</creator><creator>Yang, Huichun</creator><creator>Monson, Eric</creator><creator>Cronin, Arthur</creator><creator>Galbany, Jordi</creator><creator>Robbins, Martha M.</creator><creator>Alberts, Susan C.</creator><creator>Reeves, Mark E.</creator><creator>McFarlin, Shannon C.</creator><general>Springer International Publishing</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8182-9456</orcidid><orcidid>https://orcid.org/0000-0001-6724-3451</orcidid><orcidid>https://orcid.org/0000-0002-1313-488X</orcidid><orcidid>https://orcid.org/0000-0003-3411-1297</orcidid></search><sort><creationdate>20220601</creationdate><title>Automated, high-throughput image calibration for parallel-laser photogrammetry</title><author>Richardson, Jack L. ; Levy, Emily J. ; Ranjithkumar, Riddhi ; Yang, Huichun ; Monson, Eric ; Cronin, Arthur ; Galbany, Jordi ; Robbins, Martha M. ; Alberts, Susan C. ; Reeves, Mark E. ; McFarlin, Shannon C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-7367051a57380d6305ee2db1041d71b64eda6ac3fc633dc7b5ff14bd194ce0313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animal Anatomy</topic><topic>Animal Ecology</topic><topic>Animal Systematics/Taxonomy/Biogeography</topic><topic>Automation</topic><topic>Biomedical and Life Sciences</topic><topic>Equipment and supplies</topic><topic>Evolutionary Biology</topic><topic>Fish & Wildlife Biology & Management</topic><topic>Gorillas</topic><topic>Histology</topic><topic>Image processing</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Mechanization</topic><topic>Morphology</topic><topic>Novel Field Techniques</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richardson, Jack L.</creatorcontrib><creatorcontrib>Levy, Emily J.</creatorcontrib><creatorcontrib>Ranjithkumar, Riddhi</creatorcontrib><creatorcontrib>Yang, Huichun</creatorcontrib><creatorcontrib>Monson, Eric</creatorcontrib><creatorcontrib>Cronin, Arthur</creatorcontrib><creatorcontrib>Galbany, Jordi</creatorcontrib><creatorcontrib>Robbins, Martha M.</creatorcontrib><creatorcontrib>Alberts, Susan C.</creatorcontrib><creatorcontrib>Reeves, Mark E.</creatorcontrib><creatorcontrib>McFarlin, Shannon C.</creatorcontrib><collection>CrossRef</collection><jtitle>Mammalian biology : Zeitschrift für Säugetierkunde</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richardson, Jack L.</au><au>Levy, Emily J.</au><au>Ranjithkumar, Riddhi</au><au>Yang, Huichun</au><au>Monson, Eric</au><au>Cronin, Arthur</au><au>Galbany, Jordi</au><au>Robbins, Martha M.</au><au>Alberts, Susan C.</au><au>Reeves, Mark E.</au><au>McFarlin, Shannon C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated, high-throughput image calibration for parallel-laser photogrammetry</atitle><jtitle>Mammalian biology : Zeitschrift für Säugetierkunde</jtitle><stitle>Mamm Biol</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>102</volume><issue>3</issue><spage>615</spage><epage>627</epage><pages>615-627</pages><issn>1616-5047</issn><eissn>1618-1476</eissn><abstract>Parallel-laser photogrammetry is growing in popularity as a way to collect non-invasive body size data from wild mammals. Despite its many appeals, this method requires researchers to hand-measure (i) the pixel distance between the parallel laser spots (inter-laser distance) to produce a scale within the image, and (ii) the pixel distance between the study subject’s body landmarks (inter-landmark distance). This manual effort is time-consuming and introduces human error: a researcher measuring the same image twice will rarely return the same values both times (resulting in within-observer error), as is also the case when two researchers measure the same image (resulting in between-observer error). Here, we present two independent methods that automate the inter-laser distance measurement of parallel-laser photogrammetry images. One method uses machine learning and image processing techniques in Python, and the other uses image processing techniques in
ImageJ
. Both of these methods reduce labor and increase precision without sacrificing accuracy. We first introduce the workflow of the two methods. Then, using two parallel-laser datasets of wild mountain gorilla and wild savannah baboon images, we validate the precision of these two automated methods relative to manual measurements and to each other. We also estimate the reduction of variation in final body size estimates in centimeters when adopting these automated methods, as these methods have no human error. Finally, we highlight the strengths of each method, suggest best practices for adopting either of them, and propose future directions for the automation of parallel-laser photogrammetry data.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42991-021-00174-7</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8182-9456</orcidid><orcidid>https://orcid.org/0000-0001-6724-3451</orcidid><orcidid>https://orcid.org/0000-0002-1313-488X</orcidid><orcidid>https://orcid.org/0000-0003-3411-1297</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-5047 |
ispartof | Mammalian biology : Zeitschrift für Säugetierkunde, 2022-06, Vol.102 (3), p.615-627 |
issn | 1616-5047 1618-1476 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A734959206 |
source | SpringerLink Journals - AutoHoldings |
subjects | Animal Anatomy Animal Ecology Animal Systematics/Taxonomy/Biogeography Automation Biomedical and Life Sciences Equipment and supplies Evolutionary Biology Fish & Wildlife Biology & Management Gorillas Histology Image processing Life Sciences Machine learning Mechanization Morphology Novel Field Techniques Zoology |
title | Automated, high-throughput image calibration for parallel-laser photogrammetry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated,%20high-throughput%20image%20calibration%20for%20parallel-laser%C2%A0photogrammetry&rft.jtitle=Mammalian%20biology%20:%20Zeitschrift%20f%C3%BCr%20S%C3%A4ugetierkunde&rft.au=Richardson,%20Jack%20L.&rft.date=2022-06-01&rft.volume=102&rft.issue=3&rft.spage=615&rft.epage=627&rft.pages=615-627&rft.issn=1616-5047&rft.eissn=1618-1476&rft_id=info:doi/10.1007/s42991-021-00174-7&rft_dat=%3Cgale_cross%3EA734959206%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A734959206&rfr_iscdi=true |