Automated, high-throughput image calibration for parallel-laser photogrammetry

Parallel-laser photogrammetry is growing in popularity as a way to collect non-invasive body size data from wild mammals. Despite its many appeals, this method requires researchers to hand-measure (i) the pixel distance between the parallel laser spots (inter-laser distance) to produce a scale withi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mammalian biology : Zeitschrift für Säugetierkunde 2022-06, Vol.102 (3), p.615-627
Hauptverfasser: Richardson, Jack L., Levy, Emily J., Ranjithkumar, Riddhi, Yang, Huichun, Monson, Eric, Cronin, Arthur, Galbany, Jordi, Robbins, Martha M., Alberts, Susan C., Reeves, Mark E., McFarlin, Shannon C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 627
container_issue 3
container_start_page 615
container_title Mammalian biology : Zeitschrift für Säugetierkunde
container_volume 102
creator Richardson, Jack L.
Levy, Emily J.
Ranjithkumar, Riddhi
Yang, Huichun
Monson, Eric
Cronin, Arthur
Galbany, Jordi
Robbins, Martha M.
Alberts, Susan C.
Reeves, Mark E.
McFarlin, Shannon C.
description Parallel-laser photogrammetry is growing in popularity as a way to collect non-invasive body size data from wild mammals. Despite its many appeals, this method requires researchers to hand-measure (i) the pixel distance between the parallel laser spots (inter-laser distance) to produce a scale within the image, and (ii) the pixel distance between the study subject’s body landmarks (inter-landmark distance). This manual effort is time-consuming and introduces human error: a researcher measuring the same image twice will rarely return the same values both times (resulting in within-observer error), as is also the case when two researchers measure the same image (resulting in between-observer error). Here, we present two independent methods that automate the inter-laser distance measurement of parallel-laser photogrammetry images. One method uses machine learning and image processing techniques in Python, and the other uses image processing techniques in ImageJ . Both of these methods reduce labor and increase precision without sacrificing accuracy. We first introduce the workflow of the two methods. Then, using two parallel-laser datasets of wild mountain gorilla and wild savannah baboon images, we validate the precision of these two automated methods relative to manual measurements and to each other. We also estimate the reduction of variation in final body size estimates in centimeters when adopting these automated methods, as these methods have no human error. Finally, we highlight the strengths of each method, suggest best practices for adopting either of them, and propose future directions for the automation of parallel-laser photogrammetry data.
doi_str_mv 10.1007/s42991-021-00174-7
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A734959206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A734959206</galeid><sourcerecordid>A734959206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-7367051a57380d6305ee2db1041d71b64eda6ac3fc633dc7b5ff14bd194ce0313</originalsourceid><addsrcrecordid>eNp9kEtqwzAQhkVpoWnaC3TlA1StZL3iZQh9QSCbdi1kPWwH2zKSvMhtepaerGrcdRmGGYb_G_h_AO4xesQIiadIy6rCEJW5ERYUiguwwhxvIKaCX553Dhmi4hrcxHhEWckQW4HDdk5-UMmah6LtmhamNvi5aac5Fd2gGlto1Xd1UKnzY-F8KCYVVN_bHvYq2vD9NbU--SaoYbApnG7BlVN9tHd_cw0-X54_dm9wf3h93233UBOCEhSEC8SwYoJskOEEMWtLU2NEsRG45tQaxZUmTnNCjBY1cw7T2uCKaosIJmvwuPxtVG9lNzqfgtK5jB067UfrunzfCkIrVpWIZ6BcAB18jME6OYVsMJwkRvI3Q7lkKHMy8pyhFBkiCxSzeGxskEc_hzEb-4_6AZredlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automated, high-throughput image calibration for parallel-laser photogrammetry</title><source>SpringerLink Journals - AutoHoldings</source><creator>Richardson, Jack L. ; Levy, Emily J. ; Ranjithkumar, Riddhi ; Yang, Huichun ; Monson, Eric ; Cronin, Arthur ; Galbany, Jordi ; Robbins, Martha M. ; Alberts, Susan C. ; Reeves, Mark E. ; McFarlin, Shannon C.</creator><creatorcontrib>Richardson, Jack L. ; Levy, Emily J. ; Ranjithkumar, Riddhi ; Yang, Huichun ; Monson, Eric ; Cronin, Arthur ; Galbany, Jordi ; Robbins, Martha M. ; Alberts, Susan C. ; Reeves, Mark E. ; McFarlin, Shannon C.</creatorcontrib><description>Parallel-laser photogrammetry is growing in popularity as a way to collect non-invasive body size data from wild mammals. Despite its many appeals, this method requires researchers to hand-measure (i) the pixel distance between the parallel laser spots (inter-laser distance) to produce a scale within the image, and (ii) the pixel distance between the study subject’s body landmarks (inter-landmark distance). This manual effort is time-consuming and introduces human error: a researcher measuring the same image twice will rarely return the same values both times (resulting in within-observer error), as is also the case when two researchers measure the same image (resulting in between-observer error). Here, we present two independent methods that automate the inter-laser distance measurement of parallel-laser photogrammetry images. One method uses machine learning and image processing techniques in Python, and the other uses image processing techniques in ImageJ . Both of these methods reduce labor and increase precision without sacrificing accuracy. We first introduce the workflow of the two methods. Then, using two parallel-laser datasets of wild mountain gorilla and wild savannah baboon images, we validate the precision of these two automated methods relative to manual measurements and to each other. We also estimate the reduction of variation in final body size estimates in centimeters when adopting these automated methods, as these methods have no human error. Finally, we highlight the strengths of each method, suggest best practices for adopting either of them, and propose future directions for the automation of parallel-laser photogrammetry data.</description><identifier>ISSN: 1616-5047</identifier><identifier>EISSN: 1618-1476</identifier><identifier>DOI: 10.1007/s42991-021-00174-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animal Anatomy ; Animal Ecology ; Animal Systematics/Taxonomy/Biogeography ; Automation ; Biomedical and Life Sciences ; Equipment and supplies ; Evolutionary Biology ; Fish &amp; Wildlife Biology &amp; Management ; Gorillas ; Histology ; Image processing ; Life Sciences ; Machine learning ; Mechanization ; Morphology ; Novel Field Techniques ; Zoology</subject><ispartof>Mammalian biology : Zeitschrift für Säugetierkunde, 2022-06, Vol.102 (3), p.615-627</ispartof><rights>The Author(s) under exclusive licence to Deutsche Gesellschaft für Säugetierkunde 2022. corrected publication 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-7367051a57380d6305ee2db1041d71b64eda6ac3fc633dc7b5ff14bd194ce0313</citedby><cites>FETCH-LOGICAL-c330t-7367051a57380d6305ee2db1041d71b64eda6ac3fc633dc7b5ff14bd194ce0313</cites><orcidid>0000-0002-8182-9456 ; 0000-0001-6724-3451 ; 0000-0002-1313-488X ; 0000-0003-3411-1297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42991-021-00174-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s42991-021-00174-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Richardson, Jack L.</creatorcontrib><creatorcontrib>Levy, Emily J.</creatorcontrib><creatorcontrib>Ranjithkumar, Riddhi</creatorcontrib><creatorcontrib>Yang, Huichun</creatorcontrib><creatorcontrib>Monson, Eric</creatorcontrib><creatorcontrib>Cronin, Arthur</creatorcontrib><creatorcontrib>Galbany, Jordi</creatorcontrib><creatorcontrib>Robbins, Martha M.</creatorcontrib><creatorcontrib>Alberts, Susan C.</creatorcontrib><creatorcontrib>Reeves, Mark E.</creatorcontrib><creatorcontrib>McFarlin, Shannon C.</creatorcontrib><title>Automated, high-throughput image calibration for parallel-laser photogrammetry</title><title>Mammalian biology : Zeitschrift für Säugetierkunde</title><addtitle>Mamm Biol</addtitle><description>Parallel-laser photogrammetry is growing in popularity as a way to collect non-invasive body size data from wild mammals. Despite its many appeals, this method requires researchers to hand-measure (i) the pixel distance between the parallel laser spots (inter-laser distance) to produce a scale within the image, and (ii) the pixel distance between the study subject’s body landmarks (inter-landmark distance). This manual effort is time-consuming and introduces human error: a researcher measuring the same image twice will rarely return the same values both times (resulting in within-observer error), as is also the case when two researchers measure the same image (resulting in between-observer error). Here, we present two independent methods that automate the inter-laser distance measurement of parallel-laser photogrammetry images. One method uses machine learning and image processing techniques in Python, and the other uses image processing techniques in ImageJ . Both of these methods reduce labor and increase precision without sacrificing accuracy. We first introduce the workflow of the two methods. Then, using two parallel-laser datasets of wild mountain gorilla and wild savannah baboon images, we validate the precision of these two automated methods relative to manual measurements and to each other. We also estimate the reduction of variation in final body size estimates in centimeters when adopting these automated methods, as these methods have no human error. Finally, we highlight the strengths of each method, suggest best practices for adopting either of them, and propose future directions for the automation of parallel-laser photogrammetry data.</description><subject>Animal Anatomy</subject><subject>Animal Ecology</subject><subject>Animal Systematics/Taxonomy/Biogeography</subject><subject>Automation</subject><subject>Biomedical and Life Sciences</subject><subject>Equipment and supplies</subject><subject>Evolutionary Biology</subject><subject>Fish &amp; Wildlife Biology &amp; Management</subject><subject>Gorillas</subject><subject>Histology</subject><subject>Image processing</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Mechanization</subject><subject>Morphology</subject><subject>Novel Field Techniques</subject><subject>Zoology</subject><issn>1616-5047</issn><issn>1618-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtqwzAQhkVpoWnaC3TlA1StZL3iZQh9QSCbdi1kPWwH2zKSvMhtepaerGrcdRmGGYb_G_h_AO4xesQIiadIy6rCEJW5ERYUiguwwhxvIKaCX553Dhmi4hrcxHhEWckQW4HDdk5-UMmah6LtmhamNvi5aac5Fd2gGlto1Xd1UKnzY-F8KCYVVN_bHvYq2vD9NbU--SaoYbApnG7BlVN9tHd_cw0-X54_dm9wf3h93233UBOCEhSEC8SwYoJskOEEMWtLU2NEsRG45tQaxZUmTnNCjBY1cw7T2uCKaosIJmvwuPxtVG9lNzqfgtK5jB067UfrunzfCkIrVpWIZ6BcAB18jME6OYVsMJwkRvI3Q7lkKHMy8pyhFBkiCxSzeGxskEc_hzEb-4_6AZredlA</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Richardson, Jack L.</creator><creator>Levy, Emily J.</creator><creator>Ranjithkumar, Riddhi</creator><creator>Yang, Huichun</creator><creator>Monson, Eric</creator><creator>Cronin, Arthur</creator><creator>Galbany, Jordi</creator><creator>Robbins, Martha M.</creator><creator>Alberts, Susan C.</creator><creator>Reeves, Mark E.</creator><creator>McFarlin, Shannon C.</creator><general>Springer International Publishing</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8182-9456</orcidid><orcidid>https://orcid.org/0000-0001-6724-3451</orcidid><orcidid>https://orcid.org/0000-0002-1313-488X</orcidid><orcidid>https://orcid.org/0000-0003-3411-1297</orcidid></search><sort><creationdate>20220601</creationdate><title>Automated, high-throughput image calibration for parallel-laser photogrammetry</title><author>Richardson, Jack L. ; Levy, Emily J. ; Ranjithkumar, Riddhi ; Yang, Huichun ; Monson, Eric ; Cronin, Arthur ; Galbany, Jordi ; Robbins, Martha M. ; Alberts, Susan C. ; Reeves, Mark E. ; McFarlin, Shannon C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-7367051a57380d6305ee2db1041d71b64eda6ac3fc633dc7b5ff14bd194ce0313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animal Anatomy</topic><topic>Animal Ecology</topic><topic>Animal Systematics/Taxonomy/Biogeography</topic><topic>Automation</topic><topic>Biomedical and Life Sciences</topic><topic>Equipment and supplies</topic><topic>Evolutionary Biology</topic><topic>Fish &amp; Wildlife Biology &amp; Management</topic><topic>Gorillas</topic><topic>Histology</topic><topic>Image processing</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Mechanization</topic><topic>Morphology</topic><topic>Novel Field Techniques</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richardson, Jack L.</creatorcontrib><creatorcontrib>Levy, Emily J.</creatorcontrib><creatorcontrib>Ranjithkumar, Riddhi</creatorcontrib><creatorcontrib>Yang, Huichun</creatorcontrib><creatorcontrib>Monson, Eric</creatorcontrib><creatorcontrib>Cronin, Arthur</creatorcontrib><creatorcontrib>Galbany, Jordi</creatorcontrib><creatorcontrib>Robbins, Martha M.</creatorcontrib><creatorcontrib>Alberts, Susan C.</creatorcontrib><creatorcontrib>Reeves, Mark E.</creatorcontrib><creatorcontrib>McFarlin, Shannon C.</creatorcontrib><collection>CrossRef</collection><jtitle>Mammalian biology : Zeitschrift für Säugetierkunde</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richardson, Jack L.</au><au>Levy, Emily J.</au><au>Ranjithkumar, Riddhi</au><au>Yang, Huichun</au><au>Monson, Eric</au><au>Cronin, Arthur</au><au>Galbany, Jordi</au><au>Robbins, Martha M.</au><au>Alberts, Susan C.</au><au>Reeves, Mark E.</au><au>McFarlin, Shannon C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated, high-throughput image calibration for parallel-laser photogrammetry</atitle><jtitle>Mammalian biology : Zeitschrift für Säugetierkunde</jtitle><stitle>Mamm Biol</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>102</volume><issue>3</issue><spage>615</spage><epage>627</epage><pages>615-627</pages><issn>1616-5047</issn><eissn>1618-1476</eissn><abstract>Parallel-laser photogrammetry is growing in popularity as a way to collect non-invasive body size data from wild mammals. Despite its many appeals, this method requires researchers to hand-measure (i) the pixel distance between the parallel laser spots (inter-laser distance) to produce a scale within the image, and (ii) the pixel distance between the study subject’s body landmarks (inter-landmark distance). This manual effort is time-consuming and introduces human error: a researcher measuring the same image twice will rarely return the same values both times (resulting in within-observer error), as is also the case when two researchers measure the same image (resulting in between-observer error). Here, we present two independent methods that automate the inter-laser distance measurement of parallel-laser photogrammetry images. One method uses machine learning and image processing techniques in Python, and the other uses image processing techniques in ImageJ . Both of these methods reduce labor and increase precision without sacrificing accuracy. We first introduce the workflow of the two methods. Then, using two parallel-laser datasets of wild mountain gorilla and wild savannah baboon images, we validate the precision of these two automated methods relative to manual measurements and to each other. We also estimate the reduction of variation in final body size estimates in centimeters when adopting these automated methods, as these methods have no human error. Finally, we highlight the strengths of each method, suggest best practices for adopting either of them, and propose future directions for the automation of parallel-laser photogrammetry data.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42991-021-00174-7</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8182-9456</orcidid><orcidid>https://orcid.org/0000-0001-6724-3451</orcidid><orcidid>https://orcid.org/0000-0002-1313-488X</orcidid><orcidid>https://orcid.org/0000-0003-3411-1297</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-5047
ispartof Mammalian biology : Zeitschrift für Säugetierkunde, 2022-06, Vol.102 (3), p.615-627
issn 1616-5047
1618-1476
language eng
recordid cdi_gale_infotracacademiconefile_A734959206
source SpringerLink Journals - AutoHoldings
subjects Animal Anatomy
Animal Ecology
Animal Systematics/Taxonomy/Biogeography
Automation
Biomedical and Life Sciences
Equipment and supplies
Evolutionary Biology
Fish & Wildlife Biology & Management
Gorillas
Histology
Image processing
Life Sciences
Machine learning
Mechanization
Morphology
Novel Field Techniques
Zoology
title Automated, high-throughput image calibration for parallel-laser photogrammetry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated,%20high-throughput%20image%20calibration%20for%20parallel-laser%C2%A0photogrammetry&rft.jtitle=Mammalian%20biology%20:%20Zeitschrift%20f%C3%BCr%20S%C3%A4ugetierkunde&rft.au=Richardson,%20Jack%20L.&rft.date=2022-06-01&rft.volume=102&rft.issue=3&rft.spage=615&rft.epage=627&rft.pages=615-627&rft.issn=1616-5047&rft.eissn=1618-1476&rft_id=info:doi/10.1007/s42991-021-00174-7&rft_dat=%3Cgale_cross%3EA734959206%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A734959206&rfr_iscdi=true