Using Objective Analysis for the Assimilation of Satellite-Derived Aerosol Products to Improve PM[sub.2.5] Predictions over Europe

We used the objective analysis method in conjunction with the successive correction method to assimilate MODerate resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) data into the Chimère model in order to improve the modeling of fine particulate matter (PM[sub.2.5]) concentrati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmosphere 2022-05, Vol.13 (5)
Hauptverfasser: Chrit, Mounir, Majdi, Marwa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Atmosphere
container_volume 13
creator Chrit, Mounir
Majdi, Marwa
description We used the objective analysis method in conjunction with the successive correction method to assimilate MODerate resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) data into the Chimère model in order to improve the modeling of fine particulate matter (PM[sub.2.5]) concentrations and AOD field over Europe. A data assimilation module was developed to adjust the daily initial total column aerosol concentrations based on a forecast-analysis cycling scheme. The model is then evaluated during one-month winter period to examine how such a data assimilation technique pushes the model results closer to surface observations. This comparison showed that the mean biases of both surface PM[sub.2.5] concentrations and the AOD field could be reduced from −34 to −15% and from −45 to −27%. The assimilation, however, leads to false alarms because of the difficulty in distributing AOD[sub.550] over different particle sizes. The impact of the influence radius is found to be small and depends on the density of satellite data. This work, although preliminary, is important in terms of near-real time air quality forecasting using the Chimère model and can be further developed to improve modeled PM[sub.2.5] and ozone concentrations.
doi_str_mv 10.3390/atmos13050763
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A723608799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A723608799</galeid><sourcerecordid>A723608799</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A7236087993</originalsourceid><addsrcrecordid>eNqVTMFKw0AUXETBoj16fz-QuM1LG3MsWtFDsaCeRGSbvNRXNnll30bw6pe7ggevzhxmmGHGmIuZzRFre-liLzpDO7fVAo_MpLAVZmWJePzHn5qp6t4mlDUWWE7M17PysIOH7Z6ayB8Ey8H5T2WFTgLE9xSocs_eRZYBpINHF8l7jpTdUEiLFpYURMXDJkg7NlEhCtz3hyDpbrN-0XGbF_n8NfXUcvPzo5C6AKsxyIHOzUnnvNL0V89Mfrt6ur7Lds7TGw-dxOCaxJZ6bmSgjlO-rApc2KuqrvHfg29rKmCI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using Objective Analysis for the Assimilation of Satellite-Derived Aerosol Products to Improve PM[sub.2.5] Predictions over Europe</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chrit, Mounir ; Majdi, Marwa</creator><creatorcontrib>Chrit, Mounir ; Majdi, Marwa</creatorcontrib><description>We used the objective analysis method in conjunction with the successive correction method to assimilate MODerate resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) data into the Chimère model in order to improve the modeling of fine particulate matter (PM[sub.2.5]) concentrations and AOD field over Europe. A data assimilation module was developed to adjust the daily initial total column aerosol concentrations based on a forecast-analysis cycling scheme. The model is then evaluated during one-month winter period to examine how such a data assimilation technique pushes the model results closer to surface observations. This comparison showed that the mean biases of both surface PM[sub.2.5] concentrations and the AOD field could be reduced from −34 to −15% and from −45 to −27%. The assimilation, however, leads to false alarms because of the difficulty in distributing AOD[sub.550] over different particle sizes. The impact of the influence radius is found to be small and depends on the density of satellite data. This work, although preliminary, is important in terms of near-real time air quality forecasting using the Chimère model and can be further developed to improve modeled PM[sub.2.5] and ozone concentrations.</description><identifier>ISSN: 2073-4433</identifier><identifier>EISSN: 2073-4433</identifier><identifier>DOI: 10.3390/atmos13050763</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Aerosols ; Air pollution ; Distribution ; Environmental aspects ; Particles</subject><ispartof>Atmosphere, 2022-05, Vol.13 (5)</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Chrit, Mounir</creatorcontrib><creatorcontrib>Majdi, Marwa</creatorcontrib><title>Using Objective Analysis for the Assimilation of Satellite-Derived Aerosol Products to Improve PM[sub.2.5] Predictions over Europe</title><title>Atmosphere</title><description>We used the objective analysis method in conjunction with the successive correction method to assimilate MODerate resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) data into the Chimère model in order to improve the modeling of fine particulate matter (PM[sub.2.5]) concentrations and AOD field over Europe. A data assimilation module was developed to adjust the daily initial total column aerosol concentrations based on a forecast-analysis cycling scheme. The model is then evaluated during one-month winter period to examine how such a data assimilation technique pushes the model results closer to surface observations. This comparison showed that the mean biases of both surface PM[sub.2.5] concentrations and the AOD field could be reduced from −34 to −15% and from −45 to −27%. The assimilation, however, leads to false alarms because of the difficulty in distributing AOD[sub.550] over different particle sizes. The impact of the influence radius is found to be small and depends on the density of satellite data. This work, although preliminary, is important in terms of near-real time air quality forecasting using the Chimère model and can be further developed to improve modeled PM[sub.2.5] and ozone concentrations.</description><subject>Aerosols</subject><subject>Air pollution</subject><subject>Distribution</subject><subject>Environmental aspects</subject><subject>Particles</subject><issn>2073-4433</issn><issn>2073-4433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVTMFKw0AUXETBoj16fz-QuM1LG3MsWtFDsaCeRGSbvNRXNnll30bw6pe7ggevzhxmmGHGmIuZzRFre-liLzpDO7fVAo_MpLAVZmWJePzHn5qp6t4mlDUWWE7M17PysIOH7Z6ayB8Ey8H5T2WFTgLE9xSocs_eRZYBpINHF8l7jpTdUEiLFpYURMXDJkg7NlEhCtz3hyDpbrN-0XGbF_n8NfXUcvPzo5C6AKsxyIHOzUnnvNL0V89Mfrt6ur7Lds7TGw-dxOCaxJZ6bmSgjlO-rApc2KuqrvHfg29rKmCI</recordid><startdate>20220509</startdate><enddate>20220509</enddate><creator>Chrit, Mounir</creator><creator>Majdi, Marwa</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20220509</creationdate><title>Using Objective Analysis for the Assimilation of Satellite-Derived Aerosol Products to Improve PM[sub.2.5] Predictions over Europe</title><author>Chrit, Mounir ; Majdi, Marwa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A7236087993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerosols</topic><topic>Air pollution</topic><topic>Distribution</topic><topic>Environmental aspects</topic><topic>Particles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chrit, Mounir</creatorcontrib><creatorcontrib>Majdi, Marwa</creatorcontrib><jtitle>Atmosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chrit, Mounir</au><au>Majdi, Marwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Objective Analysis for the Assimilation of Satellite-Derived Aerosol Products to Improve PM[sub.2.5] Predictions over Europe</atitle><jtitle>Atmosphere</jtitle><date>2022-05-09</date><risdate>2022</risdate><volume>13</volume><issue>5</issue><issn>2073-4433</issn><eissn>2073-4433</eissn><abstract>We used the objective analysis method in conjunction with the successive correction method to assimilate MODerate resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) data into the Chimère model in order to improve the modeling of fine particulate matter (PM[sub.2.5]) concentrations and AOD field over Europe. A data assimilation module was developed to adjust the daily initial total column aerosol concentrations based on a forecast-analysis cycling scheme. The model is then evaluated during one-month winter period to examine how such a data assimilation technique pushes the model results closer to surface observations. This comparison showed that the mean biases of both surface PM[sub.2.5] concentrations and the AOD field could be reduced from −34 to −15% and from −45 to −27%. The assimilation, however, leads to false alarms because of the difficulty in distributing AOD[sub.550] over different particle sizes. The impact of the influence radius is found to be small and depends on the density of satellite data. This work, although preliminary, is important in terms of near-real time air quality forecasting using the Chimère model and can be further developed to improve modeled PM[sub.2.5] and ozone concentrations.</abstract><pub>MDPI AG</pub><doi>10.3390/atmos13050763</doi></addata></record>
fulltext fulltext
identifier ISSN: 2073-4433
ispartof Atmosphere, 2022-05, Vol.13 (5)
issn 2073-4433
2073-4433
language eng
recordid cdi_gale_infotracacademiconefile_A723608799
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Aerosols
Air pollution
Distribution
Environmental aspects
Particles
title Using Objective Analysis for the Assimilation of Satellite-Derived Aerosol Products to Improve PM[sub.2.5] Predictions over Europe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Objective%20Analysis%20for%20the%20Assimilation%20of%20Satellite-Derived%20Aerosol%20Products%20to%20Improve%20PM%5Bsub.2.5%5D%20Predictions%20over%20Europe&rft.jtitle=Atmosphere&rft.au=Chrit,%20Mounir&rft.date=2022-05-09&rft.volume=13&rft.issue=5&rft.issn=2073-4433&rft.eissn=2073-4433&rft_id=info:doi/10.3390/atmos13050763&rft_dat=%3Cgale%3EA723608799%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A723608799&rfr_iscdi=true