Using Objective Analysis for the Assimilation of Satellite-Derived Aerosol Products to Improve PM[sub.2.5] Predictions over Europe
We used the objective analysis method in conjunction with the successive correction method to assimilate MODerate resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) data into the Chimère model in order to improve the modeling of fine particulate matter (PM[sub.2.5]) concentrati...
Gespeichert in:
Veröffentlicht in: | Atmosphere 2022-05, Vol.13 (5) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Atmosphere |
container_volume | 13 |
creator | Chrit, Mounir Majdi, Marwa |
description | We used the objective analysis method in conjunction with the successive correction method to assimilate MODerate resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) data into the Chimère model in order to improve the modeling of fine particulate matter (PM[sub.2.5]) concentrations and AOD field over Europe. A data assimilation module was developed to adjust the daily initial total column aerosol concentrations based on a forecast-analysis cycling scheme. The model is then evaluated during one-month winter period to examine how such a data assimilation technique pushes the model results closer to surface observations. This comparison showed that the mean biases of both surface PM[sub.2.5] concentrations and the AOD field could be reduced from −34 to −15% and from −45 to −27%. The assimilation, however, leads to false alarms because of the difficulty in distributing AOD[sub.550] over different particle sizes. The impact of the influence radius is found to be small and depends on the density of satellite data. This work, although preliminary, is important in terms of near-real time air quality forecasting using the Chimère model and can be further developed to improve modeled PM[sub.2.5] and ozone concentrations. |
doi_str_mv | 10.3390/atmos13050763 |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A723608799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A723608799</galeid><sourcerecordid>A723608799</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A7236087993</originalsourceid><addsrcrecordid>eNqVTMFKw0AUXETBoj16fz-QuM1LG3MsWtFDsaCeRGSbvNRXNnll30bw6pe7ggevzhxmmGHGmIuZzRFre-liLzpDO7fVAo_MpLAVZmWJePzHn5qp6t4mlDUWWE7M17PysIOH7Z6ayB8Ey8H5T2WFTgLE9xSocs_eRZYBpINHF8l7jpTdUEiLFpYURMXDJkg7NlEhCtz3hyDpbrN-0XGbF_n8NfXUcvPzo5C6AKsxyIHOzUnnvNL0V89Mfrt6ur7Lds7TGw-dxOCaxJZ6bmSgjlO-rApc2KuqrvHfg29rKmCI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using Objective Analysis for the Assimilation of Satellite-Derived Aerosol Products to Improve PM[sub.2.5] Predictions over Europe</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chrit, Mounir ; Majdi, Marwa</creator><creatorcontrib>Chrit, Mounir ; Majdi, Marwa</creatorcontrib><description>We used the objective analysis method in conjunction with the successive correction method to assimilate MODerate resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) data into the Chimère model in order to improve the modeling of fine particulate matter (PM[sub.2.5]) concentrations and AOD field over Europe. A data assimilation module was developed to adjust the daily initial total column aerosol concentrations based on a forecast-analysis cycling scheme. The model is then evaluated during one-month winter period to examine how such a data assimilation technique pushes the model results closer to surface observations. This comparison showed that the mean biases of both surface PM[sub.2.5] concentrations and the AOD field could be reduced from −34 to −15% and from −45 to −27%. The assimilation, however, leads to false alarms because of the difficulty in distributing AOD[sub.550] over different particle sizes. The impact of the influence radius is found to be small and depends on the density of satellite data. This work, although preliminary, is important in terms of near-real time air quality forecasting using the Chimère model and can be further developed to improve modeled PM[sub.2.5] and ozone concentrations.</description><identifier>ISSN: 2073-4433</identifier><identifier>EISSN: 2073-4433</identifier><identifier>DOI: 10.3390/atmos13050763</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Aerosols ; Air pollution ; Distribution ; Environmental aspects ; Particles</subject><ispartof>Atmosphere, 2022-05, Vol.13 (5)</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Chrit, Mounir</creatorcontrib><creatorcontrib>Majdi, Marwa</creatorcontrib><title>Using Objective Analysis for the Assimilation of Satellite-Derived Aerosol Products to Improve PM[sub.2.5] Predictions over Europe</title><title>Atmosphere</title><description>We used the objective analysis method in conjunction with the successive correction method to assimilate MODerate resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) data into the Chimère model in order to improve the modeling of fine particulate matter (PM[sub.2.5]) concentrations and AOD field over Europe. A data assimilation module was developed to adjust the daily initial total column aerosol concentrations based on a forecast-analysis cycling scheme. The model is then evaluated during one-month winter period to examine how such a data assimilation technique pushes the model results closer to surface observations. This comparison showed that the mean biases of both surface PM[sub.2.5] concentrations and the AOD field could be reduced from −34 to −15% and from −45 to −27%. The assimilation, however, leads to false alarms because of the difficulty in distributing AOD[sub.550] over different particle sizes. The impact of the influence radius is found to be small and depends on the density of satellite data. This work, although preliminary, is important in terms of near-real time air quality forecasting using the Chimère model and can be further developed to improve modeled PM[sub.2.5] and ozone concentrations.</description><subject>Aerosols</subject><subject>Air pollution</subject><subject>Distribution</subject><subject>Environmental aspects</subject><subject>Particles</subject><issn>2073-4433</issn><issn>2073-4433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVTMFKw0AUXETBoj16fz-QuM1LG3MsWtFDsaCeRGSbvNRXNnll30bw6pe7ggevzhxmmGHGmIuZzRFre-liLzpDO7fVAo_MpLAVZmWJePzHn5qp6t4mlDUWWE7M17PysIOH7Z6ayB8Ey8H5T2WFTgLE9xSocs_eRZYBpINHF8l7jpTdUEiLFpYURMXDJkg7NlEhCtz3hyDpbrN-0XGbF_n8NfXUcvPzo5C6AKsxyIHOzUnnvNL0V89Mfrt6ur7Lds7TGw-dxOCaxJZ6bmSgjlO-rApc2KuqrvHfg29rKmCI</recordid><startdate>20220509</startdate><enddate>20220509</enddate><creator>Chrit, Mounir</creator><creator>Majdi, Marwa</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20220509</creationdate><title>Using Objective Analysis for the Assimilation of Satellite-Derived Aerosol Products to Improve PM[sub.2.5] Predictions over Europe</title><author>Chrit, Mounir ; Majdi, Marwa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A7236087993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerosols</topic><topic>Air pollution</topic><topic>Distribution</topic><topic>Environmental aspects</topic><topic>Particles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chrit, Mounir</creatorcontrib><creatorcontrib>Majdi, Marwa</creatorcontrib><jtitle>Atmosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chrit, Mounir</au><au>Majdi, Marwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Objective Analysis for the Assimilation of Satellite-Derived Aerosol Products to Improve PM[sub.2.5] Predictions over Europe</atitle><jtitle>Atmosphere</jtitle><date>2022-05-09</date><risdate>2022</risdate><volume>13</volume><issue>5</issue><issn>2073-4433</issn><eissn>2073-4433</eissn><abstract>We used the objective analysis method in conjunction with the successive correction method to assimilate MODerate resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) data into the Chimère model in order to improve the modeling of fine particulate matter (PM[sub.2.5]) concentrations and AOD field over Europe. A data assimilation module was developed to adjust the daily initial total column aerosol concentrations based on a forecast-analysis cycling scheme. The model is then evaluated during one-month winter period to examine how such a data assimilation technique pushes the model results closer to surface observations. This comparison showed that the mean biases of both surface PM[sub.2.5] concentrations and the AOD field could be reduced from −34 to −15% and from −45 to −27%. The assimilation, however, leads to false alarms because of the difficulty in distributing AOD[sub.550] over different particle sizes. The impact of the influence radius is found to be small and depends on the density of satellite data. This work, although preliminary, is important in terms of near-real time air quality forecasting using the Chimère model and can be further developed to improve modeled PM[sub.2.5] and ozone concentrations.</abstract><pub>MDPI AG</pub><doi>10.3390/atmos13050763</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4433 |
ispartof | Atmosphere, 2022-05, Vol.13 (5) |
issn | 2073-4433 2073-4433 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A723608799 |
source | DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Aerosols Air pollution Distribution Environmental aspects Particles |
title | Using Objective Analysis for the Assimilation of Satellite-Derived Aerosol Products to Improve PM[sub.2.5] Predictions over Europe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Objective%20Analysis%20for%20the%20Assimilation%20of%20Satellite-Derived%20Aerosol%20Products%20to%20Improve%20PM%5Bsub.2.5%5D%20Predictions%20over%20Europe&rft.jtitle=Atmosphere&rft.au=Chrit,%20Mounir&rft.date=2022-05-09&rft.volume=13&rft.issue=5&rft.issn=2073-4433&rft.eissn=2073-4433&rft_id=info:doi/10.3390/atmos13050763&rft_dat=%3Cgale%3EA723608799%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A723608799&rfr_iscdi=true |