Genome-Wide Screening of Transposable Elements in the Whitefly, IBemisia tabaci/I , Revealed Insertions with Potential Insecticide Resistance Implications
Transposable elements (TEs) are mobile DNA sequences hosted in the genomes of various organisms. These elements have the ability to mediate regulatory changes, which can result in changes in gene expression. Bemisia tabaci is an important agricultural pest that has been linked to several cases of in...
Gespeichert in:
Veröffentlicht in: | Insects (Basel, Switzerland) Switzerland), 2022-04, Vol.13 (5) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Transposable elements (TEs) are mobile DNA sequences hosted in the genomes of various organisms. These elements have the ability to mediate regulatory changes, which can result in changes in gene expression. Bemisia tabaci is an important agricultural pest that has been linked to several cases of insecticide resistance. In this study, we conducted a genome-wide screening of TEs in the B. tabaci genome using bioinformatics tools. Results revealed a total of 1,292,393 TE copies clustered into 4872 lineages. The TE insertion site analysis revealed 94 insertions within or near defensome genes. Transposable elements (TEs) are genetically mobile units that move from one site to another within a genome. These units can mediate regulatory changes that can result in massive changes in genes expression. In fact, a precise identification of TEs can allow the detection of the mechanisms involving these elements in gene regulation and genome evolution. In the present study, a genome-wide analysis of the Hemipteran pest Bemisia tabaci was conducted using bioinformatics tools to identify, annotate and estimate the age of TEs, in addition to their insertion sites, within or near of the defensome genes involved in insecticide resistance. Overall, 1,292,393 TE copies were identified in the B. tabaci genome grouped into 4872 lineages. A total of 699 lineages were found to belong to Class I of TEs, 1348 belong to Class II, and 2825 were uncategorized and form the largest part of TEs (28.81%). The TE age estimation revealed that the oldest TEs invasion happened 14 million years ago (MYA) and the most recent occurred 0.2 MYA with the insertion of Class II TE elements. The analysis of TE insertion sites in defensome genes revealed 94 insertions. Six of these TE insertions were found within or near previously identified differentially expressed insecticide resistance genes. These insertions may have a potential role in the observed insecticide resistance in these pests. |
---|---|
ISSN: | 2075-4450 2075-4450 |
DOI: | 10.3390/insects13050396 |