Strong Embeddability of Time-Invariant Nonlinear Differential Systems in Linear Differential Systems

We consider a pair (Σ, w ) consisting of a time-invariant nonlinear differential system Σ and a real piecewise smooth function w defined on the state space of the differential system. The notion of strong embeddability of the pair (Σ, w ) in a linear differential system is introduced. A criterion fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2019-03, Vol.55 (3), p.303-312
1. Verfasser: Borukhov, V. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 312
container_issue 3
container_start_page 303
container_title Differential equations
container_volume 55
creator Borukhov, V. T.
description We consider a pair (Σ, w ) consisting of a time-invariant nonlinear differential system Σ and a real piecewise smooth function w defined on the state space of the differential system. The notion of strong embeddability of the pair (Σ, w ) in a linear differential system is introduced. A criterion for the finite-dimensional-strong embeddability of the pair is obtained, linear embedding systems are described, and the explicit representation of first integrals is given for systems in finite-dimensional-strongly embeddable pairs. The class of first integrals determining the general solution of a finite-dimensional-strongly embeddable pair is singled out.
doi_str_mv 10.1134/S0012266119030030
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A720270708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A720270708</galeid><sourcerecordid>A720270708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-8fc97a2525c62a2689b25e192965b0d8c2e3c2eddf4b971306d59fc24aa17a753</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWKsP4C0vsHWSNMnmWGrVQtFD63nJ5k9J2c1Ksgp9e1PqTZRMGJhvfsPMh9A9gRkhbP6wBSCUCkGIAgYlLtCECKgrBjW7RJOTXJ30a3ST8wEAlCR8gux2TEPc41XfOmt1G7owHvHg8S70rlrHL52CjiN-HWIXotMJPwbvXXJxDLrD22MeXZ9xiHjzt3yLrrzusrv7yVP0_rTaLV-qzdvzernYVIZKNVa1N0pqyik3gmoqatVS7oiiSvAWbG2oY-Vb6-dt2Z6BsFx5Q-daE6klZ1M0O8_d6841IfphTNqUZ10fzBCdD6W-kBSoBFmMmSJyBkwack7ONx8p9DodGwLNydfml6-FoWcml964d6k5DJ8plrv-gb4B7W56Vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strong Embeddability of Time-Invariant Nonlinear Differential Systems in Linear Differential Systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Borukhov, V. T.</creator><creatorcontrib>Borukhov, V. T.</creatorcontrib><description>We consider a pair (Σ, w ) consisting of a time-invariant nonlinear differential system Σ and a real piecewise smooth function w defined on the state space of the differential system. The notion of strong embeddability of the pair (Σ, w ) in a linear differential system is introduced. A criterion for the finite-dimensional-strong embeddability of the pair is obtained, linear embedding systems are described, and the explicit representation of first integrals is given for systems in finite-dimensional-strongly embeddable pairs. The class of first integrals determining the general solution of a finite-dimensional-strongly embeddable pair is singled out.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266119030030</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Difference and Functional Equations ; Embedded systems ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equation ; Ordinary Differential Equations ; Partial Differential Equations</subject><ispartof>Differential equations, 2019-03, Vol.55 (3), p.303-312</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>COPYRIGHT 2019 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-8fc97a2525c62a2689b25e192965b0d8c2e3c2eddf4b971306d59fc24aa17a753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266119030030$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266119030030$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Borukhov, V. T.</creatorcontrib><title>Strong Embeddability of Time-Invariant Nonlinear Differential Systems in Linear Differential Systems</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We consider a pair (Σ, w ) consisting of a time-invariant nonlinear differential system Σ and a real piecewise smooth function w defined on the state space of the differential system. The notion of strong embeddability of the pair (Σ, w ) in a linear differential system is introduced. A criterion for the finite-dimensional-strong embeddability of the pair is obtained, linear embedding systems are described, and the explicit representation of first integrals is given for systems in finite-dimensional-strongly embeddable pairs. The class of first integrals determining the general solution of a finite-dimensional-strongly embeddable pair is singled out.</description><subject>Difference and Functional Equations</subject><subject>Embedded systems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equation</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWKsP4C0vsHWSNMnmWGrVQtFD63nJ5k9J2c1Ksgp9e1PqTZRMGJhvfsPMh9A9gRkhbP6wBSCUCkGIAgYlLtCECKgrBjW7RJOTXJ30a3ST8wEAlCR8gux2TEPc41XfOmt1G7owHvHg8S70rlrHL52CjiN-HWIXotMJPwbvXXJxDLrD22MeXZ9xiHjzt3yLrrzusrv7yVP0_rTaLV-qzdvzernYVIZKNVa1N0pqyik3gmoqatVS7oiiSvAWbG2oY-Vb6-dt2Z6BsFx5Q-daE6klZ1M0O8_d6841IfphTNqUZ10fzBCdD6W-kBSoBFmMmSJyBkwack7ONx8p9DodGwLNydfml6-FoWcml964d6k5DJ8plrv-gb4B7W56Vw</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Borukhov, V. T.</creator><general>Pleiades Publishing</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190301</creationdate><title>Strong Embeddability of Time-Invariant Nonlinear Differential Systems in Linear Differential Systems</title><author>Borukhov, V. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-8fc97a2525c62a2689b25e192965b0d8c2e3c2eddf4b971306d59fc24aa17a753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Difference and Functional Equations</topic><topic>Embedded systems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equation</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borukhov, V. T.</creatorcontrib><collection>CrossRef</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borukhov, V. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Embeddability of Time-Invariant Nonlinear Differential Systems in Linear Differential Systems</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>55</volume><issue>3</issue><spage>303</spage><epage>312</epage><pages>303-312</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We consider a pair (Σ, w ) consisting of a time-invariant nonlinear differential system Σ and a real piecewise smooth function w defined on the state space of the differential system. The notion of strong embeddability of the pair (Σ, w ) in a linear differential system is introduced. A criterion for the finite-dimensional-strong embeddability of the pair is obtained, linear embedding systems are described, and the explicit representation of first integrals is given for systems in finite-dimensional-strongly embeddable pairs. The class of first integrals determining the general solution of a finite-dimensional-strongly embeddable pair is singled out.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266119030030</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2019-03, Vol.55 (3), p.303-312
issn 0012-2661
1608-3083
language eng
recordid cdi_gale_infotracacademiconefile_A720270708
source SpringerLink Journals - AutoHoldings
subjects Difference and Functional Equations
Embedded systems
Mathematics
Mathematics and Statistics
Ordinary Differential Equation
Ordinary Differential Equations
Partial Differential Equations
title Strong Embeddability of Time-Invariant Nonlinear Differential Systems in Linear Differential Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Embeddability%20of%20Time-Invariant%20Nonlinear%20Differential%20Systems%20in%20Linear%20Differential%20Systems&rft.jtitle=Differential%20equations&rft.au=Borukhov,%20V.%20T.&rft.date=2019-03-01&rft.volume=55&rft.issue=3&rft.spage=303&rft.epage=312&rft.pages=303-312&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266119030030&rft_dat=%3Cgale_cross%3EA720270708%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A720270708&rfr_iscdi=true