Ulyanov-type Inequalities Between Lorentz–Zygmund Spaces

We establish inequalities of Ulyanov-type for moduli of smoothness relating the source Lorentz–Zygmund space L p , r ( log L ) α - γ , γ > 0 , and the target space L p ∗ , s ( log L ) α over R n if 1 < p < p ∗ < ∞ and over T n if 1 < p ≤ p ∗ < ∞ . The stronger logarithmic integrabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2014-10, Vol.20 (5), p.1020-1049
Hauptverfasser: Gogatishvili, Amiran, Opic, Bohumír, Tikhonov, Sergey, Trebels, Walter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1049
container_issue 5
container_start_page 1020
container_title The Journal of fourier analysis and applications
container_volume 20
creator Gogatishvili, Amiran
Opic, Bohumír
Tikhonov, Sergey
Trebels, Walter
description We establish inequalities of Ulyanov-type for moduli of smoothness relating the source Lorentz–Zygmund space L p , r ( log L ) α - γ , γ > 0 , and the target space L p ∗ , s ( log L ) α over R n if 1 < p < p ∗ < ∞ and over T n if 1 < p ≤ p ∗ < ∞ . The stronger logarithmic integrability (corresponding to L p ∗ , s ( log L ) α ) is balanced by an additional logarithmic smoothness.
doi_str_mv 10.1007/s00041-014-9343-4
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A718424767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718424767</galeid><sourcerecordid>A718424767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-18d886fab6fd7577ae59c73f638e33fc31e828a489c56268f73a41f7f7de2d6f3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqVwAHa5gIsdO7bDrlT8VKrEArphYxlnXKVKnWInoLDiDtyQk-AqrNEs5tNo3kjzELqkZEYJkVeREMIpJpTjknGG-RGa0IJRXKiCHqdMRJmyKE_RWYxbQnLKJJug63UzGN--427YQ7b08Nabpu5qiNkNdB8APlu1AXz3-fP1_TJsdr2vsqe9sRDP0YkzTYSLvz5F67vb58UDXj3eLxfzFbZMkg5TVSklnHkVrpKFlAaK0krmBFPAmLOMgsqV4aq0hciFcpIZTp10soK8Eo5N0Wy8uzEN6Nq7tgvGpqpgV9vWg6vTfC6p4jmXQiaAjoANbYwBnN6HemfCoCnRB1t6tKWTLX2wpXli8pGJaddvIOht2wef_voH-gVXrG3I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ulyanov-type Inequalities Between Lorentz–Zygmund Spaces</title><source>SpringerLink Journals</source><creator>Gogatishvili, Amiran ; Opic, Bohumír ; Tikhonov, Sergey ; Trebels, Walter</creator><creatorcontrib>Gogatishvili, Amiran ; Opic, Bohumír ; Tikhonov, Sergey ; Trebels, Walter</creatorcontrib><description>We establish inequalities of Ulyanov-type for moduli of smoothness relating the source Lorentz–Zygmund space L p , r ( log L ) α - γ , γ &gt; 0 , and the target space L p ∗ , s ( log L ) α over R n if 1 &lt; p &lt; p ∗ &lt; ∞ and over T n if 1 &lt; p ≤ p ∗ &lt; ∞ . The stronger logarithmic integrability (corresponding to L p ∗ , s ( log L ) α ) is balanced by an additional logarithmic smoothness.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-014-9343-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Abstract Harmonic Analysis ; Algebra ; Analysis ; Approximations and Expansions ; Fourier Analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical analysis ; Partial Differential Equations ; Signal,Image and Speech Processing</subject><ispartof>The Journal of fourier analysis and applications, 2014-10, Vol.20 (5), p.1020-1049</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-18d886fab6fd7577ae59c73f638e33fc31e828a489c56268f73a41f7f7de2d6f3</citedby><cites>FETCH-LOGICAL-c370t-18d886fab6fd7577ae59c73f638e33fc31e828a489c56268f73a41f7f7de2d6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00041-014-9343-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00041-014-9343-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gogatishvili, Amiran</creatorcontrib><creatorcontrib>Opic, Bohumír</creatorcontrib><creatorcontrib>Tikhonov, Sergey</creatorcontrib><creatorcontrib>Trebels, Walter</creatorcontrib><title>Ulyanov-type Inequalities Between Lorentz–Zygmund Spaces</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>We establish inequalities of Ulyanov-type for moduli of smoothness relating the source Lorentz–Zygmund space L p , r ( log L ) α - γ , γ &gt; 0 , and the target space L p ∗ , s ( log L ) α over R n if 1 &lt; p &lt; p ∗ &lt; ∞ and over T n if 1 &lt; p ≤ p ∗ &lt; ∞ . The stronger logarithmic integrability (corresponding to L p ∗ , s ( log L ) α ) is balanced by an additional logarithmic smoothness.</description><subject>Abstract Harmonic Analysis</subject><subject>Algebra</subject><subject>Analysis</subject><subject>Approximations and Expansions</subject><subject>Fourier Analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical analysis</subject><subject>Partial Differential Equations</subject><subject>Signal,Image and Speech Processing</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EEqVwAHa5gIsdO7bDrlT8VKrEArphYxlnXKVKnWInoLDiDtyQk-AqrNEs5tNo3kjzELqkZEYJkVeREMIpJpTjknGG-RGa0IJRXKiCHqdMRJmyKE_RWYxbQnLKJJug63UzGN--427YQ7b08Nabpu5qiNkNdB8APlu1AXz3-fP1_TJsdr2vsqe9sRDP0YkzTYSLvz5F67vb58UDXj3eLxfzFbZMkg5TVSklnHkVrpKFlAaK0krmBFPAmLOMgsqV4aq0hciFcpIZTp10soK8Eo5N0Wy8uzEN6Nq7tgvGpqpgV9vWg6vTfC6p4jmXQiaAjoANbYwBnN6HemfCoCnRB1t6tKWTLX2wpXli8pGJaddvIOht2wef_voH-gVXrG3I</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Gogatishvili, Amiran</creator><creator>Opic, Bohumír</creator><creator>Tikhonov, Sergey</creator><creator>Trebels, Walter</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141001</creationdate><title>Ulyanov-type Inequalities Between Lorentz–Zygmund Spaces</title><author>Gogatishvili, Amiran ; Opic, Bohumír ; Tikhonov, Sergey ; Trebels, Walter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-18d886fab6fd7577ae59c73f638e33fc31e828a489c56268f73a41f7f7de2d6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Algebra</topic><topic>Analysis</topic><topic>Approximations and Expansions</topic><topic>Fourier Analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical analysis</topic><topic>Partial Differential Equations</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gogatishvili, Amiran</creatorcontrib><creatorcontrib>Opic, Bohumír</creatorcontrib><creatorcontrib>Tikhonov, Sergey</creatorcontrib><creatorcontrib>Trebels, Walter</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gogatishvili, Amiran</au><au>Opic, Bohumír</au><au>Tikhonov, Sergey</au><au>Trebels, Walter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ulyanov-type Inequalities Between Lorentz–Zygmund Spaces</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>20</volume><issue>5</issue><spage>1020</spage><epage>1049</epage><pages>1020-1049</pages><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>We establish inequalities of Ulyanov-type for moduli of smoothness relating the source Lorentz–Zygmund space L p , r ( log L ) α - γ , γ &gt; 0 , and the target space L p ∗ , s ( log L ) α over R n if 1 &lt; p &lt; p ∗ &lt; ∞ and over T n if 1 &lt; p ≤ p ∗ &lt; ∞ . The stronger logarithmic integrability (corresponding to L p ∗ , s ( log L ) α ) is balanced by an additional logarithmic smoothness.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s00041-014-9343-4</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1069-5869
ispartof The Journal of fourier analysis and applications, 2014-10, Vol.20 (5), p.1020-1049
issn 1069-5869
1531-5851
language eng
recordid cdi_gale_infotracacademiconefile_A718424767
source SpringerLink Journals
subjects Abstract Harmonic Analysis
Algebra
Analysis
Approximations and Expansions
Fourier Analysis
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical analysis
Partial Differential Equations
Signal,Image and Speech Processing
title Ulyanov-type Inequalities Between Lorentz–Zygmund Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ulyanov-type%20Inequalities%20Between%20Lorentz%E2%80%93Zygmund%20Spaces&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Gogatishvili,%20Amiran&rft.date=2014-10-01&rft.volume=20&rft.issue=5&rft.spage=1020&rft.epage=1049&rft.pages=1020-1049&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-014-9343-4&rft_dat=%3Cgale_cross%3EA718424767%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A718424767&rfr_iscdi=true