Note on a Result of Kerman and Weit II

Let G be a locally compact topological group, equipped with a fixed left Haar measure μ . We show that if f is a compactly supported real valued continuous function on G which has a unique maximum or a unique minimum at a point in G , then the space generated by the span of left translations of { f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2013-04, Vol.19 (2), p.251-255
Hauptverfasser: Ray, Swagato K., Sarkar, Rudra P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 255
container_issue 2
container_start_page 251
container_title The Journal of fourier analysis and applications
container_volume 19
creator Ray, Swagato K.
Sarkar, Rudra P.
description Let G be a locally compact topological group, equipped with a fixed left Haar measure μ . We show that if f is a compactly supported real valued continuous function on G which has a unique maximum or a unique minimum at a point in G , then the space generated by the span of left translations of { f n ∣ n =1,2,3,…} is dense in L p ( G , μ ), 1≤ p
doi_str_mv 10.1007/s00041-012-9247-0
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A718422734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718422734</galeid><sourcerecordid>A718422734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-4554d873ea193efe1cefb439fe4c122d272b743e0379b59ce8b2c65324c5eae03</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFtO3rZm8tFsjqX4USwKongM2eykbGk3kmwP_nuzrGeZw7y8zDPDvITcAlsAY_o-M8YkVAx4ZbjUFTsjM1ACKlUrOC-aLU3RS3NJrnLeM8ZBaDEjd69xQBp76ug75tNhoDHQF0xHV6y-pV_YDXSzuSYXwR0y3vz1Ofl8fPhYP1fbt6fNerWtvOB6qKRSsq21QAdGYEDwGBopTEDpgfOWa95oKZAJbRplPNYN90sluPQKXbHnZDHt3bkD2q4PcUjOl2rx2PnYY-iKv9JQS861kAWACfAp5pww2O_UHV36scDsmIydkrElGTsmY8cjfGJyme13mOw-nlJf_voH-gUvwGNB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Note on a Result of Kerman and Weit II</title><source>SpringerLink Journals</source><creator>Ray, Swagato K. ; Sarkar, Rudra P.</creator><creatorcontrib>Ray, Swagato K. ; Sarkar, Rudra P.</creatorcontrib><description>Let G be a locally compact topological group, equipped with a fixed left Haar measure μ . We show that if f is a compactly supported real valued continuous function on G which has a unique maximum or a unique minimum at a point in G , then the space generated by the span of left translations of { f n ∣ n =1,2,3,…} is dense in L p ( G , μ ), 1≤ p &lt;∞, in the space of continuous functions, continuous compactly supported functions and in the space of continuous functions vanishing at ∞. Similar results are true when the group G is substituted by G -spaces with compact isotropy group.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-012-9247-0</identifier><language>eng</language><publisher>Boston: SP Birkhäuser Verlag Boston</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Fourier Analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Signal,Image and Speech Processing</subject><ispartof>The Journal of fourier analysis and applications, 2013-04, Vol.19 (2), p.251-255</ispartof><rights>Springer Science+Business Media New York 2012</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-4554d873ea193efe1cefb439fe4c122d272b743e0379b59ce8b2c65324c5eae03</citedby><cites>FETCH-LOGICAL-c327t-4554d873ea193efe1cefb439fe4c122d272b743e0379b59ce8b2c65324c5eae03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00041-012-9247-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00041-012-9247-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ray, Swagato K.</creatorcontrib><creatorcontrib>Sarkar, Rudra P.</creatorcontrib><title>Note on a Result of Kerman and Weit II</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>Let G be a locally compact topological group, equipped with a fixed left Haar measure μ . We show that if f is a compactly supported real valued continuous function on G which has a unique maximum or a unique minimum at a point in G , then the space generated by the span of left translations of { f n ∣ n =1,2,3,…} is dense in L p ( G , μ ), 1≤ p &lt;∞, in the space of continuous functions, continuous compactly supported functions and in the space of continuous functions vanishing at ∞. Similar results are true when the group G is substituted by G -spaces with compact isotropy group.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Fourier Analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Signal,Image and Speech Processing</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFtO3rZm8tFsjqX4USwKongM2eykbGk3kmwP_nuzrGeZw7y8zDPDvITcAlsAY_o-M8YkVAx4ZbjUFTsjM1ACKlUrOC-aLU3RS3NJrnLeM8ZBaDEjd69xQBp76ug75tNhoDHQF0xHV6y-pV_YDXSzuSYXwR0y3vz1Ofl8fPhYP1fbt6fNerWtvOB6qKRSsq21QAdGYEDwGBopTEDpgfOWa95oKZAJbRplPNYN90sluPQKXbHnZDHt3bkD2q4PcUjOl2rx2PnYY-iKv9JQS861kAWACfAp5pww2O_UHV36scDsmIydkrElGTsmY8cjfGJyme13mOw-nlJf_voH-gUvwGNB</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Ray, Swagato K.</creator><creator>Sarkar, Rudra P.</creator><general>SP Birkhäuser Verlag Boston</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130401</creationdate><title>Note on a Result of Kerman and Weit II</title><author>Ray, Swagato K. ; Sarkar, Rudra P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-4554d873ea193efe1cefb439fe4c122d272b743e0379b59ce8b2c65324c5eae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Fourier Analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ray, Swagato K.</creatorcontrib><creatorcontrib>Sarkar, Rudra P.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ray, Swagato K.</au><au>Sarkar, Rudra P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Note on a Result of Kerman and Weit II</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>19</volume><issue>2</issue><spage>251</spage><epage>255</epage><pages>251-255</pages><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>Let G be a locally compact topological group, equipped with a fixed left Haar measure μ . We show that if f is a compactly supported real valued continuous function on G which has a unique maximum or a unique minimum at a point in G , then the space generated by the span of left translations of { f n ∣ n =1,2,3,…} is dense in L p ( G , μ ), 1≤ p &lt;∞, in the space of continuous functions, continuous compactly supported functions and in the space of continuous functions vanishing at ∞. Similar results are true when the group G is substituted by G -spaces with compact isotropy group.</abstract><cop>Boston</cop><pub>SP Birkhäuser Verlag Boston</pub><doi>10.1007/s00041-012-9247-0</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1069-5869
ispartof The Journal of fourier analysis and applications, 2013-04, Vol.19 (2), p.251-255
issn 1069-5869
1531-5851
language eng
recordid cdi_gale_infotracacademiconefile_A718422734
source SpringerLink Journals
subjects Abstract Harmonic Analysis
Approximations and Expansions
Fourier Analysis
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Partial Differential Equations
Signal,Image and Speech Processing
title Note on a Result of Kerman and Weit II
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A21%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Note%20on%20a%20Result%20of%20Kerman%20and%20Weit%20II&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Ray,%20Swagato%20K.&rft.date=2013-04-01&rft.volume=19&rft.issue=2&rft.spage=251&rft.epage=255&rft.pages=251-255&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-012-9247-0&rft_dat=%3Cgale_cross%3EA718422734%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A718422734&rfr_iscdi=true