Modeling empathy: building a link between affective and cognitive processes
Computational modeling of empathy has recently become an increasingly popular way of studying human relations. It provides a way to increase our understanding of the link between affective and cognitive processes and enhance our interaction with artificial agents. However, the variety of fields cont...
Gespeichert in:
Veröffentlicht in: | The Artificial intelligence review 2020-04, Vol.53 (4), p.2983-3006 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3006 |
---|---|
container_issue | 4 |
container_start_page | 2983 |
container_title | The Artificial intelligence review |
container_volume | 53 |
creator | Yalçın, Özge Nilay DiPaola, Steve |
description | Computational modeling of empathy has recently become an increasingly popular way of studying human relations. It provides a way to increase our understanding of the link between affective and cognitive processes and enhance our interaction with artificial agents. However, the variety of fields contributing to empathy research has resulted in isolated approaches to modeling empathy, and this has led to various definitions of empathy and an absence of common ground regarding underlying empathic processes. Although this diversity may be useful in that it allows for an in-depth examination of various processes linked to empathy, it also may not yet provide a coherent theoretical picture of empathy. We argue that a clear theoretical positioning is required for collective progress. The aim of this article is, therefore, to call for a holistic and multilayered view of a model of empathy, taken from the rich background research from various disciplines. To achieve this, we present a comprehensive background on the theoretical foundations, followed by the working definitions, components, and models of empathy that are proposed by various fields. Following this introduction, we provide a detailed review of the existing techniques used in AI research to model empathy in interactive agents, focusing on the strengths and weaknesses of each approach. We conclude with a discussion of future directions in this emerging field. |
doi_str_mv | 10.1007/s10462-019-09753-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_sprin</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A718214954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718214954</galeid><sourcerecordid>A718214954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-4c073e9237a6f017bb4e3322785ab40d2f5ce91731ce6fb3ddf5028aace53a003</originalsourceid><addsrcrecordid>eNqNkEtPAyEUhYnRxPr4A64mcWlGL48ZOu5M4ytq3OiaMMylUluoA9X476UdoztjWACX8517OYQcUTilAPIsUhA1K4E2JTSy4iVskRGtJC9lrm-TEbC6KdmY0V2yF-MMACom-IjcPYQO585PC1wsdXr5PC_alZt364ou8sNr0WL6QPSFthZNcu9YaN8VJky929yWfTAYI8YDsmP1POLh975Pnq8unyY35f3j9e3k4r40AupUCgOSY8O41LUFKttWIOeMyXGlWwEds5XBhkpODda25V1nK2BjrQ1WXAPwfXI8-ObObyuMSc3Cqve5pcoukkohapFVp4NqqueonLch9drk1eHCmeDRuly_kDSHIppqDbABMH2IsUerlr1b6P5TUVDrlNWQssopq03Kaj3LeIA-sA02Gofe4A84xCyyfz4xmLikkwt-ElY-ZfTk_2hW80Eds8JPsf_99B_jfQFdlp-n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2277174464</pqid></control><display><type>article</type><title>Modeling empathy: building a link between affective and cognitive processes</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Web of Science - Social Sciences Citation Index – 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Yalçın, Özge Nilay ; DiPaola, Steve</creator><creatorcontrib>Yalçın, Özge Nilay ; DiPaola, Steve</creatorcontrib><description>Computational modeling of empathy has recently become an increasingly popular way of studying human relations. It provides a way to increase our understanding of the link between affective and cognitive processes and enhance our interaction with artificial agents. However, the variety of fields contributing to empathy research has resulted in isolated approaches to modeling empathy, and this has led to various definitions of empathy and an absence of common ground regarding underlying empathic processes. Although this diversity may be useful in that it allows for an in-depth examination of various processes linked to empathy, it also may not yet provide a coherent theoretical picture of empathy. We argue that a clear theoretical positioning is required for collective progress. The aim of this article is, therefore, to call for a holistic and multilayered view of a model of empathy, taken from the rich background research from various disciplines. To achieve this, we present a comprehensive background on the theoretical foundations, followed by the working definitions, components, and models of empathy that are proposed by various fields. Following this introduction, we provide a detailed review of the existing techniques used in AI research to model empathy in interactive agents, focusing on the strengths and weaknesses of each approach. We conclude with a discussion of future directions in this emerging field.</description><identifier>ISSN: 0269-2821</identifier><identifier>EISSN: 1573-7462</identifier><identifier>DOI: 10.1007/s10462-019-09753-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Agents (artificial intelligence) ; Analysis ; Artificial Intelligence ; Cognition ; Cognition & reasoning ; Computer Science ; Computer Science, Artificial Intelligence ; Computer simulation ; Computer-generated environments ; Empathy ; Human relations ; Science & Technology ; Technology</subject><ispartof>The Artificial intelligence review, 2020-04, Vol.53 (4), p.2983-3006</ispartof><rights>Springer Nature B.V. 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>31</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000524414900020</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c406t-4c073e9237a6f017bb4e3322785ab40d2f5ce91731ce6fb3ddf5028aace53a003</citedby><cites>FETCH-LOGICAL-c406t-4c073e9237a6f017bb4e3322785ab40d2f5ce91731ce6fb3ddf5028aace53a003</cites><orcidid>0000-0002-8898-0466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10462-019-09753-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10462-019-09753-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,28253,28254,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Yalçın, Özge Nilay</creatorcontrib><creatorcontrib>DiPaola, Steve</creatorcontrib><title>Modeling empathy: building a link between affective and cognitive processes</title><title>The Artificial intelligence review</title><addtitle>Artif Intell Rev</addtitle><addtitle>ARTIF INTELL REV</addtitle><description>Computational modeling of empathy has recently become an increasingly popular way of studying human relations. It provides a way to increase our understanding of the link between affective and cognitive processes and enhance our interaction with artificial agents. However, the variety of fields contributing to empathy research has resulted in isolated approaches to modeling empathy, and this has led to various definitions of empathy and an absence of common ground regarding underlying empathic processes. Although this diversity may be useful in that it allows for an in-depth examination of various processes linked to empathy, it also may not yet provide a coherent theoretical picture of empathy. We argue that a clear theoretical positioning is required for collective progress. The aim of this article is, therefore, to call for a holistic and multilayered view of a model of empathy, taken from the rich background research from various disciplines. To achieve this, we present a comprehensive background on the theoretical foundations, followed by the working definitions, components, and models of empathy that are proposed by various fields. Following this introduction, we provide a detailed review of the existing techniques used in AI research to model empathy in interactive agents, focusing on the strengths and weaknesses of each approach. We conclude with a discussion of future directions in this emerging field.</description><subject>Agents (artificial intelligence)</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Cognition</subject><subject>Cognition & reasoning</subject><subject>Computer Science</subject><subject>Computer Science, Artificial Intelligence</subject><subject>Computer simulation</subject><subject>Computer-generated environments</subject><subject>Empathy</subject><subject>Human relations</subject><subject>Science & Technology</subject><subject>Technology</subject><issn>0269-2821</issn><issn>1573-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ARHDP</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkEtPAyEUhYnRxPr4A64mcWlGL48ZOu5M4ytq3OiaMMylUluoA9X476UdoztjWACX8517OYQcUTilAPIsUhA1K4E2JTSy4iVskRGtJC9lrm-TEbC6KdmY0V2yF-MMACom-IjcPYQO585PC1wsdXr5PC_alZt364ou8sNr0WL6QPSFthZNcu9YaN8VJky929yWfTAYI8YDsmP1POLh975Pnq8unyY35f3j9e3k4r40AupUCgOSY8O41LUFKttWIOeMyXGlWwEds5XBhkpODda25V1nK2BjrQ1WXAPwfXI8-ObObyuMSc3Cqve5pcoukkohapFVp4NqqueonLch9drk1eHCmeDRuly_kDSHIppqDbABMH2IsUerlr1b6P5TUVDrlNWQssopq03Kaj3LeIA-sA02Gofe4A84xCyyfz4xmLikkwt-ElY-ZfTk_2hW80Eds8JPsf_99B_jfQFdlp-n</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Yalçın, Özge Nilay</creator><creator>DiPaola, Steve</creator><general>Springer Netherlands</general><general>Springer Nature</general><general>Springer</general><general>Springer Nature B.V</general><scope>17B</scope><scope>AOWDO</scope><scope>ARHDP</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8898-0466</orcidid></search><sort><creationdate>20200401</creationdate><title>Modeling empathy: building a link between affective and cognitive processes</title><author>Yalçın, Özge Nilay ; DiPaola, Steve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-4c073e9237a6f017bb4e3322785ab40d2f5ce91731ce6fb3ddf5028aace53a003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agents (artificial intelligence)</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Cognition</topic><topic>Cognition & reasoning</topic><topic>Computer Science</topic><topic>Computer Science, Artificial Intelligence</topic><topic>Computer simulation</topic><topic>Computer-generated environments</topic><topic>Empathy</topic><topic>Human relations</topic><topic>Science & Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yalçın, Özge Nilay</creatorcontrib><creatorcontrib>DiPaola, Steve</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science - Social Sciences Citation Index – 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI & AHCI)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>The Artificial intelligence review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yalçın, Özge Nilay</au><au>DiPaola, Steve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling empathy: building a link between affective and cognitive processes</atitle><jtitle>The Artificial intelligence review</jtitle><stitle>Artif Intell Rev</stitle><stitle>ARTIF INTELL REV</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>53</volume><issue>4</issue><spage>2983</spage><epage>3006</epage><pages>2983-3006</pages><issn>0269-2821</issn><eissn>1573-7462</eissn><abstract>Computational modeling of empathy has recently become an increasingly popular way of studying human relations. It provides a way to increase our understanding of the link between affective and cognitive processes and enhance our interaction with artificial agents. However, the variety of fields contributing to empathy research has resulted in isolated approaches to modeling empathy, and this has led to various definitions of empathy and an absence of common ground regarding underlying empathic processes. Although this diversity may be useful in that it allows for an in-depth examination of various processes linked to empathy, it also may not yet provide a coherent theoretical picture of empathy. We argue that a clear theoretical positioning is required for collective progress. The aim of this article is, therefore, to call for a holistic and multilayered view of a model of empathy, taken from the rich background research from various disciplines. To achieve this, we present a comprehensive background on the theoretical foundations, followed by the working definitions, components, and models of empathy that are proposed by various fields. Following this introduction, we provide a detailed review of the existing techniques used in AI research to model empathy in interactive agents, focusing on the strengths and weaknesses of each approach. We conclude with a discussion of future directions in this emerging field.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10462-019-09753-0</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-8898-0466</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-2821 |
ispartof | The Artificial intelligence review, 2020-04, Vol.53 (4), p.2983-3006 |
issn | 0269-2821 1573-7462 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A718214954 |
source | SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Web of Science - Social Sciences Citation Index – 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Agents (artificial intelligence) Analysis Artificial Intelligence Cognition Cognition & reasoning Computer Science Computer Science, Artificial Intelligence Computer simulation Computer-generated environments Empathy Human relations Science & Technology Technology |
title | Modeling empathy: building a link between affective and cognitive processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T22%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20empathy:%20building%20a%20link%20between%20affective%20and%20cognitive%20processes&rft.jtitle=The%20Artificial%20intelligence%20review&rft.au=Yal%C3%A7%C4%B1n,%20%C3%96zge%20Nilay&rft.date=2020-04-01&rft.volume=53&rft.issue=4&rft.spage=2983&rft.epage=3006&rft.pages=2983-3006&rft.issn=0269-2821&rft.eissn=1573-7462&rft_id=info:doi/10.1007/s10462-019-09753-0&rft_dat=%3Cgale_sprin%3EA718214954%3C/gale_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2277174464&rft_id=info:pmid/&rft_galeid=A718214954&rfr_iscdi=true |