Solvability of the Integro-Differential Equation in the Problem of Wave Diffraction on a Junction of Rectangular Waveguides

We study the problem of electromagnetic wave diffraction on a junction of two rectangular waveguides. The boundary value problem for the system of Maxwell equations is reduced to a vector pseudodifferential equation in special Sobolev spaces. Sufficient conditions are obtained for the existence of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2020-08, Vol.56 (8), p.1041-1049
Hauptverfasser: Ilyinsky, A. S., Smirnov, Yu. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1049
container_issue 8
container_start_page 1041
container_title Differential equations
container_volume 56
creator Ilyinsky, A. S.
Smirnov, Yu. G.
description We study the problem of electromagnetic wave diffraction on a junction of two rectangular waveguides. The boundary value problem for the system of Maxwell equations is reduced to a vector pseudodifferential equation in special Sobolev spaces. Sufficient conditions are obtained for the existence of a unique solution of the boundary value problem and the integro-differential equation.
doi_str_mv 10.1134/S0012266120080078
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A716330334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A716330334</galeid><sourcerecordid>A716330334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-2cd47acd073a60799fb97d752645fd7ccffca7a1ec8dc8d9ed976991e3e841363</originalsourceid><addsrcrecordid>eNp9kF9LwzAQwIMoOKcfwLd8gc6k6ZLmUfw7GShO8bFk6aVmdImm6WD45U23vQlyB0dyv9-RHEKXlEwoZcXVghCa55zTnJCSEFEeoRHlpMwYKdkxGg3tbOiforOuWxFCpKDTEfpZ-Hajlra1cYu9wfET8MxFaILPbq0xEMBFq1p8992raL3D1u2gl-CXLawH50NtAA9wUHqHpFT4qXeHk8GvoKNyTd-qsKOb3tbQnaMTo9oOLg51jN7v795uHrP588Ps5nqe6VzImOW6LoTSNRFMcSKkNEspajHNeTE1tdDaGK2EoqDLOqWEWgouJQUGZUEZZ2M02c9tVAuVdcbH9NIUNayt9g6MTffXgnLGCGNFEuhe0MF3XQBTfQW7VmFbUVIN667-rDs5-d7pEusaCNXK98Glf_0j_QJsIoNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solvability of the Integro-Differential Equation in the Problem of Wave Diffraction on a Junction of Rectangular Waveguides</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ilyinsky, A. S. ; Smirnov, Yu. G.</creator><creatorcontrib>Ilyinsky, A. S. ; Smirnov, Yu. G.</creatorcontrib><description>We study the problem of electromagnetic wave diffraction on a junction of two rectangular waveguides. The boundary value problem for the system of Maxwell equations is reduced to a vector pseudodifferential equation in special Sobolev spaces. Sufficient conditions are obtained for the existence of a unique solution of the boundary value problem and the integro-differential equation.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266120080078</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Difference and Functional Equations ; Differential equations ; Electric waves ; Electromagnetic radiation ; Electromagnetic waves ; Electromagnetism ; Mathematics ; Mathematics and Statistics ; Microwave devices ; Ordinary Differential Equations ; Partial Differential Equations ; Waveguides</subject><ispartof>Differential equations, 2020-08, Vol.56 (8), p.1041-1049</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266120080078$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266120080078$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ilyinsky, A. S.</creatorcontrib><creatorcontrib>Smirnov, Yu. G.</creatorcontrib><title>Solvability of the Integro-Differential Equation in the Problem of Wave Diffraction on a Junction of Rectangular Waveguides</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We study the problem of electromagnetic wave diffraction on a junction of two rectangular waveguides. The boundary value problem for the system of Maxwell equations is reduced to a vector pseudodifferential equation in special Sobolev spaces. Sufficient conditions are obtained for the existence of a unique solution of the boundary value problem and the integro-differential equation.</description><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Electric waves</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic waves</subject><subject>Electromagnetism</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Microwave devices</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Waveguides</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAQwIMoOKcfwLd8gc6k6ZLmUfw7GShO8bFk6aVmdImm6WD45U23vQlyB0dyv9-RHEKXlEwoZcXVghCa55zTnJCSEFEeoRHlpMwYKdkxGg3tbOiforOuWxFCpKDTEfpZ-Hajlra1cYu9wfET8MxFaILPbq0xEMBFq1p8992raL3D1u2gl-CXLawH50NtAA9wUHqHpFT4qXeHk8GvoKNyTd-qsKOb3tbQnaMTo9oOLg51jN7v795uHrP588Ps5nqe6VzImOW6LoTSNRFMcSKkNEspajHNeTE1tdDaGK2EoqDLOqWEWgouJQUGZUEZZ2M02c9tVAuVdcbH9NIUNayt9g6MTffXgnLGCGNFEuhe0MF3XQBTfQW7VmFbUVIN667-rDs5-d7pEusaCNXK98Glf_0j_QJsIoNA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Ilyinsky, A. S.</creator><creator>Smirnov, Yu. G.</creator><general>Pleiades Publishing</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200801</creationdate><title>Solvability of the Integro-Differential Equation in the Problem of Wave Diffraction on a Junction of Rectangular Waveguides</title><author>Ilyinsky, A. S. ; Smirnov, Yu. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-2cd47acd073a60799fb97d752645fd7ccffca7a1ec8dc8d9ed976991e3e841363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Electric waves</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic waves</topic><topic>Electromagnetism</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Microwave devices</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ilyinsky, A. S.</creatorcontrib><creatorcontrib>Smirnov, Yu. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ilyinsky, A. S.</au><au>Smirnov, Yu. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvability of the Integro-Differential Equation in the Problem of Wave Diffraction on a Junction of Rectangular Waveguides</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>56</volume><issue>8</issue><spage>1041</spage><epage>1049</epage><pages>1041-1049</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We study the problem of electromagnetic wave diffraction on a junction of two rectangular waveguides. The boundary value problem for the system of Maxwell equations is reduced to a vector pseudodifferential equation in special Sobolev spaces. Sufficient conditions are obtained for the existence of a unique solution of the boundary value problem and the integro-differential equation.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266120080078</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2020-08, Vol.56 (8), p.1041-1049
issn 0012-2661
1608-3083
language eng
recordid cdi_gale_infotracacademiconefile_A716330334
source SpringerLink Journals - AutoHoldings
subjects Difference and Functional Equations
Differential equations
Electric waves
Electromagnetic radiation
Electromagnetic waves
Electromagnetism
Mathematics
Mathematics and Statistics
Microwave devices
Ordinary Differential Equations
Partial Differential Equations
Waveguides
title Solvability of the Integro-Differential Equation in the Problem of Wave Diffraction on a Junction of Rectangular Waveguides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A55%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvability%20of%20the%20Integro-Differential%20Equation%20in%20the%20Problem%20of%20Wave%20Diffraction%20on%20a%20Junction%20of%20Rectangular%20Waveguides&rft.jtitle=Differential%20equations&rft.au=Ilyinsky,%20A.%20S.&rft.date=2020-08-01&rft.volume=56&rft.issue=8&rft.spage=1041&rft.epage=1049&rft.pages=1041-1049&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266120080078&rft_dat=%3Cgale_cross%3EA716330334%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A716330334&rfr_iscdi=true