Solvability of the Integro-Differential Equation in the Problem of Wave Diffraction on a Junction of Rectangular Waveguides
We study the problem of electromagnetic wave diffraction on a junction of two rectangular waveguides. The boundary value problem for the system of Maxwell equations is reduced to a vector pseudodifferential equation in special Sobolev spaces. Sufficient conditions are obtained for the existence of a...
Gespeichert in:
Veröffentlicht in: | Differential equations 2020-08, Vol.56 (8), p.1041-1049 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1049 |
---|---|
container_issue | 8 |
container_start_page | 1041 |
container_title | Differential equations |
container_volume | 56 |
creator | Ilyinsky, A. S. Smirnov, Yu. G. |
description | We study the problem of electromagnetic wave diffraction on a junction of two rectangular waveguides. The boundary value problem for the system of Maxwell equations is reduced to a vector pseudodifferential equation in special Sobolev spaces. Sufficient conditions are obtained for the existence of a unique solution of the boundary value problem and the integro-differential equation. |
doi_str_mv | 10.1134/S0012266120080078 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A716330334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A716330334</galeid><sourcerecordid>A716330334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-2cd47acd073a60799fb97d752645fd7ccffca7a1ec8dc8d9ed976991e3e841363</originalsourceid><addsrcrecordid>eNp9kF9LwzAQwIMoOKcfwLd8gc6k6ZLmUfw7GShO8bFk6aVmdImm6WD45U23vQlyB0dyv9-RHEKXlEwoZcXVghCa55zTnJCSEFEeoRHlpMwYKdkxGg3tbOiforOuWxFCpKDTEfpZ-Hajlra1cYu9wfET8MxFaILPbq0xEMBFq1p8992raL3D1u2gl-CXLawH50NtAA9wUHqHpFT4qXeHk8GvoKNyTd-qsKOb3tbQnaMTo9oOLg51jN7v795uHrP588Ps5nqe6VzImOW6LoTSNRFMcSKkNEspajHNeTE1tdDaGK2EoqDLOqWEWgouJQUGZUEZZ2M02c9tVAuVdcbH9NIUNayt9g6MTffXgnLGCGNFEuhe0MF3XQBTfQW7VmFbUVIN667-rDs5-d7pEusaCNXK98Glf_0j_QJsIoNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solvability of the Integro-Differential Equation in the Problem of Wave Diffraction on a Junction of Rectangular Waveguides</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ilyinsky, A. S. ; Smirnov, Yu. G.</creator><creatorcontrib>Ilyinsky, A. S. ; Smirnov, Yu. G.</creatorcontrib><description>We study the problem of electromagnetic wave diffraction on a junction of two rectangular waveguides. The boundary value problem for the system of Maxwell equations is reduced to a vector pseudodifferential equation in special Sobolev spaces. Sufficient conditions are obtained for the existence of a unique solution of the boundary value problem and the integro-differential equation.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266120080078</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Difference and Functional Equations ; Differential equations ; Electric waves ; Electromagnetic radiation ; Electromagnetic waves ; Electromagnetism ; Mathematics ; Mathematics and Statistics ; Microwave devices ; Ordinary Differential Equations ; Partial Differential Equations ; Waveguides</subject><ispartof>Differential equations, 2020-08, Vol.56 (8), p.1041-1049</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266120080078$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266120080078$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ilyinsky, A. S.</creatorcontrib><creatorcontrib>Smirnov, Yu. G.</creatorcontrib><title>Solvability of the Integro-Differential Equation in the Problem of Wave Diffraction on a Junction of Rectangular Waveguides</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We study the problem of electromagnetic wave diffraction on a junction of two rectangular waveguides. The boundary value problem for the system of Maxwell equations is reduced to a vector pseudodifferential equation in special Sobolev spaces. Sufficient conditions are obtained for the existence of a unique solution of the boundary value problem and the integro-differential equation.</description><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Electric waves</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic waves</subject><subject>Electromagnetism</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Microwave devices</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Waveguides</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAQwIMoOKcfwLd8gc6k6ZLmUfw7GShO8bFk6aVmdImm6WD45U23vQlyB0dyv9-RHEKXlEwoZcXVghCa55zTnJCSEFEeoRHlpMwYKdkxGg3tbOiforOuWxFCpKDTEfpZ-Hajlra1cYu9wfET8MxFaILPbq0xEMBFq1p8992raL3D1u2gl-CXLawH50NtAA9wUHqHpFT4qXeHk8GvoKNyTd-qsKOb3tbQnaMTo9oOLg51jN7v795uHrP588Ps5nqe6VzImOW6LoTSNRFMcSKkNEspajHNeTE1tdDaGK2EoqDLOqWEWgouJQUGZUEZZ2M02c9tVAuVdcbH9NIUNayt9g6MTffXgnLGCGNFEuhe0MF3XQBTfQW7VmFbUVIN667-rDs5-d7pEusaCNXK98Glf_0j_QJsIoNA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Ilyinsky, A. S.</creator><creator>Smirnov, Yu. G.</creator><general>Pleiades Publishing</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200801</creationdate><title>Solvability of the Integro-Differential Equation in the Problem of Wave Diffraction on a Junction of Rectangular Waveguides</title><author>Ilyinsky, A. S. ; Smirnov, Yu. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-2cd47acd073a60799fb97d752645fd7ccffca7a1ec8dc8d9ed976991e3e841363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Electric waves</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic waves</topic><topic>Electromagnetism</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Microwave devices</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ilyinsky, A. S.</creatorcontrib><creatorcontrib>Smirnov, Yu. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ilyinsky, A. S.</au><au>Smirnov, Yu. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvability of the Integro-Differential Equation in the Problem of Wave Diffraction on a Junction of Rectangular Waveguides</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>56</volume><issue>8</issue><spage>1041</spage><epage>1049</epage><pages>1041-1049</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We study the problem of electromagnetic wave diffraction on a junction of two rectangular waveguides. The boundary value problem for the system of Maxwell equations is reduced to a vector pseudodifferential equation in special Sobolev spaces. Sufficient conditions are obtained for the existence of a unique solution of the boundary value problem and the integro-differential equation.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266120080078</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-2661 |
ispartof | Differential equations, 2020-08, Vol.56 (8), p.1041-1049 |
issn | 0012-2661 1608-3083 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A716330334 |
source | SpringerLink Journals - AutoHoldings |
subjects | Difference and Functional Equations Differential equations Electric waves Electromagnetic radiation Electromagnetic waves Electromagnetism Mathematics Mathematics and Statistics Microwave devices Ordinary Differential Equations Partial Differential Equations Waveguides |
title | Solvability of the Integro-Differential Equation in the Problem of Wave Diffraction on a Junction of Rectangular Waveguides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A55%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvability%20of%20the%20Integro-Differential%20Equation%20in%20the%20Problem%20of%20Wave%20Diffraction%20on%20a%20Junction%20of%20Rectangular%20Waveguides&rft.jtitle=Differential%20equations&rft.au=Ilyinsky,%20A.%20S.&rft.date=2020-08-01&rft.volume=56&rft.issue=8&rft.spage=1041&rft.epage=1049&rft.pages=1041-1049&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266120080078&rft_dat=%3Cgale_cross%3EA716330334%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A716330334&rfr_iscdi=true |