Shift of DNRA bacterial community composition in sediment cores of the Pearl River Estuary and the impact of environmental factors

Dissimilatory nitrate reduction to ammonia (DNRA) process, competing with denitrification and anaerobic ammonia oxidation (anammox) for nitrate, is an important nitrogen retention pathway in the environment. Previous studies on DNRA bacterial diversity and composition focused on the surface sediment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology (London) 2021-10, Vol.30 (8), p.1689-1703
Hauptverfasser: Hu, Yaohao, Hong, Yiguo, Ye, Jiaqi, Wu, Jiapeng, Wang, Yu, Ye, Fei, Chang, Xiangyang, Long, Aimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1703
container_issue 8
container_start_page 1689
container_title Ecotoxicology (London)
container_volume 30
creator Hu, Yaohao
Hong, Yiguo
Ye, Jiaqi
Wu, Jiapeng
Wang, Yu
Ye, Fei
Chang, Xiangyang
Long, Aimin
description Dissimilatory nitrate reduction to ammonia (DNRA) process, competing with denitrification and anaerobic ammonia oxidation (anammox) for nitrate, is an important nitrogen retention pathway in the environment. Previous studies on DNRA bacterial diversity and composition focused on the surface sediments in estuaries, but studies on the deep sediments are limited, and the linkage between DNRA community structure and complex estuarine environment remains unclear. In this study, through high-throughput sequencing of nrfA gene followed by high-resolution sample inference, we examined spatially and temporally the composition and diversity of DNRA bacteria along a salinity gradient in five sediment cores of the Pearl River Estuary (PRE). We found a higher diversity and richness of DNRA bacteria in sediments with lower organic carbon, where sea water intersects fresh water. Moreover, the DNRA bacterial communities had the specific spatially distribution coupling with their metabolic difference along the salinity gradient of the Pearl River Estuary, but no obvious difference along the sediment depth. The distribution of DNRA bacteria in the PRE was largely driven by various environmental factors, including salinity, Oxidation-Reduction Potential (ORP), ammonium, nitrate and C org /NO 3 − . Furthermore, dominant DNRA bacteria were found to be the key populations of DNRA communities in the PRE sediments by network analysis. Collectively, our results showed that niche difference of DNRA bacteria indeed occurs in the Pearl River Estuary.
doi_str_mv 10.1007/s10646-020-02321-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A713745596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713745596</galeid><sourcerecordid>A713745596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-c21d5acf379046c7bf294de1e6996d6613ce3cde9cbba89ec6d54dc1ed64ebc3</originalsourceid><addsrcrecordid>eNp9UU1vFSEUJUZjn0__gAtD4noqd2CYx_Kl1o-kUVO7JwzcaWnewBOYJt32l8t0qu4MIZBzzzn3wiHkLbBTYKz_kIFJIRvWsrp5Cw08Ixvoet5wBv1zsmFK8ka1qj0hr3K-ZYypXrCX5IRzAQCSb8jDzxs_FhpH-vHb5Z4OxhZM3hyojdM0B1_ul9sxZl98DNQHmtH5CUOpeMK8KMsN0h9o0oFe-jtM9DyX2aR7aoJ7rPnpWG0XJoY7n2JY5LXFWNGY8mvyYjSHjG-ezi25-nR-dfalufj--evZ_qKxAkRpbAuuM3bkvWJC2n4YWyUcAkqlpJMSuEVuHSo7DGan0ErXCWcBnRQ4WL4l71fbY4q_ZsxF38Y5hdpRt13PpNxx2FXW6cq6NgfUPoyxJGPrcjh5GwOOvuL7Hngvuq7-75a0q8CmmHPCUR-Tn-rzNTC9xKTXmHSNST_GpKGK3j3NMg8Tur-SP7lUAl8JuZbCNaZ_w_7H9jfpnJ-C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570668318</pqid></control><display><type>article</type><title>Shift of DNRA bacterial community composition in sediment cores of the Pearl River Estuary and the impact of environmental factors</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hu, Yaohao ; Hong, Yiguo ; Ye, Jiaqi ; Wu, Jiapeng ; Wang, Yu ; Ye, Fei ; Chang, Xiangyang ; Long, Aimin</creator><creatorcontrib>Hu, Yaohao ; Hong, Yiguo ; Ye, Jiaqi ; Wu, Jiapeng ; Wang, Yu ; Ye, Fei ; Chang, Xiangyang ; Long, Aimin</creatorcontrib><description>Dissimilatory nitrate reduction to ammonia (DNRA) process, competing with denitrification and anaerobic ammonia oxidation (anammox) for nitrate, is an important nitrogen retention pathway in the environment. Previous studies on DNRA bacterial diversity and composition focused on the surface sediments in estuaries, but studies on the deep sediments are limited, and the linkage between DNRA community structure and complex estuarine environment remains unclear. In this study, through high-throughput sequencing of nrfA gene followed by high-resolution sample inference, we examined spatially and temporally the composition and diversity of DNRA bacteria along a salinity gradient in five sediment cores of the Pearl River Estuary (PRE). We found a higher diversity and richness of DNRA bacteria in sediments with lower organic carbon, where sea water intersects fresh water. Moreover, the DNRA bacterial communities had the specific spatially distribution coupling with their metabolic difference along the salinity gradient of the Pearl River Estuary, but no obvious difference along the sediment depth. The distribution of DNRA bacteria in the PRE was largely driven by various environmental factors, including salinity, Oxidation-Reduction Potential (ORP), ammonium, nitrate and C org /NO 3 − . Furthermore, dominant DNRA bacteria were found to be the key populations of DNRA communities in the PRE sediments by network analysis. Collectively, our results showed that niche difference of DNRA bacteria indeed occurs in the Pearl River Estuary.</description><identifier>ISSN: 0963-9292</identifier><identifier>EISSN: 1573-3017</identifier><identifier>DOI: 10.1007/s10646-020-02321-1</identifier><identifier>PMID: 33411163</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ammonia ; Ammonia-oxidizing bacteria ; Ammonium ; Ammonium compounds ; Ammonium nitrogen ; Anaerobic processes ; Analysis ; Bacteria ; Brackishwater environment ; Chemical analysis ; Community composition ; Community structure ; Composition ; Cores ; Denitrification ; Distribution ; Earth and Environmental Science ; Ecology ; Ecotoxicology ; Environment ; Environmental factors ; Environmental impact ; Environmental Management ; Estuaries ; Estuarine dynamics ; Estuarine environments ; Fresh water ; Freshwater ; Gene sequencing ; Inland water environment ; Network analysis ; Next-generation sequencing ; Nitrate reduction ; Nitrates ; Organic carbon ; Oxidation ; Oxidation-reduction potential ; Redox potential ; Rivers ; Salinity ; Salinity effects ; Salinity gradients ; Seawater ; Sediment ; Sediments ; Sediments (Geology) ; Water analysis ; Water depth</subject><ispartof>Ecotoxicology (London), 2021-10, Vol.30 (8), p.1689-1703</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021. corrected publication 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021. corrected publication 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-c21d5acf379046c7bf294de1e6996d6613ce3cde9cbba89ec6d54dc1ed64ebc3</citedby><cites>FETCH-LOGICAL-c414t-c21d5acf379046c7bf294de1e6996d6613ce3cde9cbba89ec6d54dc1ed64ebc3</cites><orcidid>0000-0002-6255-4100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10646-020-02321-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10646-020-02321-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33411163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Yaohao</creatorcontrib><creatorcontrib>Hong, Yiguo</creatorcontrib><creatorcontrib>Ye, Jiaqi</creatorcontrib><creatorcontrib>Wu, Jiapeng</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Ye, Fei</creatorcontrib><creatorcontrib>Chang, Xiangyang</creatorcontrib><creatorcontrib>Long, Aimin</creatorcontrib><title>Shift of DNRA bacterial community composition in sediment cores of the Pearl River Estuary and the impact of environmental factors</title><title>Ecotoxicology (London)</title><addtitle>Ecotoxicology</addtitle><addtitle>Ecotoxicology</addtitle><description>Dissimilatory nitrate reduction to ammonia (DNRA) process, competing with denitrification and anaerobic ammonia oxidation (anammox) for nitrate, is an important nitrogen retention pathway in the environment. Previous studies on DNRA bacterial diversity and composition focused on the surface sediments in estuaries, but studies on the deep sediments are limited, and the linkage between DNRA community structure and complex estuarine environment remains unclear. In this study, through high-throughput sequencing of nrfA gene followed by high-resolution sample inference, we examined spatially and temporally the composition and diversity of DNRA bacteria along a salinity gradient in five sediment cores of the Pearl River Estuary (PRE). We found a higher diversity and richness of DNRA bacteria in sediments with lower organic carbon, where sea water intersects fresh water. Moreover, the DNRA bacterial communities had the specific spatially distribution coupling with their metabolic difference along the salinity gradient of the Pearl River Estuary, but no obvious difference along the sediment depth. The distribution of DNRA bacteria in the PRE was largely driven by various environmental factors, including salinity, Oxidation-Reduction Potential (ORP), ammonium, nitrate and C org /NO 3 − . Furthermore, dominant DNRA bacteria were found to be the key populations of DNRA communities in the PRE sediments by network analysis. Collectively, our results showed that niche difference of DNRA bacteria indeed occurs in the Pearl River Estuary.</description><subject>Ammonia</subject><subject>Ammonia-oxidizing bacteria</subject><subject>Ammonium</subject><subject>Ammonium compounds</subject><subject>Ammonium nitrogen</subject><subject>Anaerobic processes</subject><subject>Analysis</subject><subject>Bacteria</subject><subject>Brackishwater environment</subject><subject>Chemical analysis</subject><subject>Community composition</subject><subject>Community structure</subject><subject>Composition</subject><subject>Cores</subject><subject>Denitrification</subject><subject>Distribution</subject><subject>Earth and Environmental Science</subject><subject>Ecology</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental factors</subject><subject>Environmental impact</subject><subject>Environmental Management</subject><subject>Estuaries</subject><subject>Estuarine dynamics</subject><subject>Estuarine environments</subject><subject>Fresh water</subject><subject>Freshwater</subject><subject>Gene sequencing</subject><subject>Inland water environment</subject><subject>Network analysis</subject><subject>Next-generation sequencing</subject><subject>Nitrate reduction</subject><subject>Nitrates</subject><subject>Organic carbon</subject><subject>Oxidation</subject><subject>Oxidation-reduction potential</subject><subject>Redox potential</subject><subject>Rivers</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Salinity gradients</subject><subject>Seawater</subject><subject>Sediment</subject><subject>Sediments</subject><subject>Sediments (Geology)</subject><subject>Water analysis</subject><subject>Water depth</subject><issn>0963-9292</issn><issn>1573-3017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU1vFSEUJUZjn0__gAtD4noqd2CYx_Kl1o-kUVO7JwzcaWnewBOYJt32l8t0qu4MIZBzzzn3wiHkLbBTYKz_kIFJIRvWsrp5Cw08Ixvoet5wBv1zsmFK8ka1qj0hr3K-ZYypXrCX5IRzAQCSb8jDzxs_FhpH-vHb5Z4OxhZM3hyojdM0B1_ul9sxZl98DNQHmtH5CUOpeMK8KMsN0h9o0oFe-jtM9DyX2aR7aoJ7rPnpWG0XJoY7n2JY5LXFWNGY8mvyYjSHjG-ezi25-nR-dfalufj--evZ_qKxAkRpbAuuM3bkvWJC2n4YWyUcAkqlpJMSuEVuHSo7DGan0ErXCWcBnRQ4WL4l71fbY4q_ZsxF38Y5hdpRt13PpNxx2FXW6cq6NgfUPoyxJGPrcjh5GwOOvuL7Hngvuq7-75a0q8CmmHPCUR-Tn-rzNTC9xKTXmHSNST_GpKGK3j3NMg8Tur-SP7lUAl8JuZbCNaZ_w_7H9jfpnJ-C</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Hu, Yaohao</creator><creator>Hong, Yiguo</creator><creator>Ye, Jiaqi</creator><creator>Wu, Jiapeng</creator><creator>Wang, Yu</creator><creator>Ye, Fei</creator><creator>Chang, Xiangyang</creator><creator>Long, Aimin</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7SN</scope><scope>7ST</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6255-4100</orcidid></search><sort><creationdate>20211001</creationdate><title>Shift of DNRA bacterial community composition in sediment cores of the Pearl River Estuary and the impact of environmental factors</title><author>Hu, Yaohao ; Hong, Yiguo ; Ye, Jiaqi ; Wu, Jiapeng ; Wang, Yu ; Ye, Fei ; Chang, Xiangyang ; Long, Aimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-c21d5acf379046c7bf294de1e6996d6613ce3cde9cbba89ec6d54dc1ed64ebc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ammonia</topic><topic>Ammonia-oxidizing bacteria</topic><topic>Ammonium</topic><topic>Ammonium compounds</topic><topic>Ammonium nitrogen</topic><topic>Anaerobic processes</topic><topic>Analysis</topic><topic>Bacteria</topic><topic>Brackishwater environment</topic><topic>Chemical analysis</topic><topic>Community composition</topic><topic>Community structure</topic><topic>Composition</topic><topic>Cores</topic><topic>Denitrification</topic><topic>Distribution</topic><topic>Earth and Environmental Science</topic><topic>Ecology</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental factors</topic><topic>Environmental impact</topic><topic>Environmental Management</topic><topic>Estuaries</topic><topic>Estuarine dynamics</topic><topic>Estuarine environments</topic><topic>Fresh water</topic><topic>Freshwater</topic><topic>Gene sequencing</topic><topic>Inland water environment</topic><topic>Network analysis</topic><topic>Next-generation sequencing</topic><topic>Nitrate reduction</topic><topic>Nitrates</topic><topic>Organic carbon</topic><topic>Oxidation</topic><topic>Oxidation-reduction potential</topic><topic>Redox potential</topic><topic>Rivers</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Salinity gradients</topic><topic>Seawater</topic><topic>Sediment</topic><topic>Sediments</topic><topic>Sediments (Geology)</topic><topic>Water analysis</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yaohao</creatorcontrib><creatorcontrib>Hong, Yiguo</creatorcontrib><creatorcontrib>Ye, Jiaqi</creatorcontrib><creatorcontrib>Wu, Jiapeng</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Ye, Fei</creatorcontrib><creatorcontrib>Chang, Xiangyang</creatorcontrib><creatorcontrib>Long, Aimin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Ecotoxicology (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yaohao</au><au>Hong, Yiguo</au><au>Ye, Jiaqi</au><au>Wu, Jiapeng</au><au>Wang, Yu</au><au>Ye, Fei</au><au>Chang, Xiangyang</au><au>Long, Aimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shift of DNRA bacterial community composition in sediment cores of the Pearl River Estuary and the impact of environmental factors</atitle><jtitle>Ecotoxicology (London)</jtitle><stitle>Ecotoxicology</stitle><addtitle>Ecotoxicology</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>30</volume><issue>8</issue><spage>1689</spage><epage>1703</epage><pages>1689-1703</pages><issn>0963-9292</issn><eissn>1573-3017</eissn><abstract>Dissimilatory nitrate reduction to ammonia (DNRA) process, competing with denitrification and anaerobic ammonia oxidation (anammox) for nitrate, is an important nitrogen retention pathway in the environment. Previous studies on DNRA bacterial diversity and composition focused on the surface sediments in estuaries, but studies on the deep sediments are limited, and the linkage between DNRA community structure and complex estuarine environment remains unclear. In this study, through high-throughput sequencing of nrfA gene followed by high-resolution sample inference, we examined spatially and temporally the composition and diversity of DNRA bacteria along a salinity gradient in five sediment cores of the Pearl River Estuary (PRE). We found a higher diversity and richness of DNRA bacteria in sediments with lower organic carbon, where sea water intersects fresh water. Moreover, the DNRA bacterial communities had the specific spatially distribution coupling with their metabolic difference along the salinity gradient of the Pearl River Estuary, but no obvious difference along the sediment depth. The distribution of DNRA bacteria in the PRE was largely driven by various environmental factors, including salinity, Oxidation-Reduction Potential (ORP), ammonium, nitrate and C org /NO 3 − . Furthermore, dominant DNRA bacteria were found to be the key populations of DNRA communities in the PRE sediments by network analysis. Collectively, our results showed that niche difference of DNRA bacteria indeed occurs in the Pearl River Estuary.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33411163</pmid><doi>10.1007/s10646-020-02321-1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6255-4100</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0963-9292
ispartof Ecotoxicology (London), 2021-10, Vol.30 (8), p.1689-1703
issn 0963-9292
1573-3017
language eng
recordid cdi_gale_infotracacademiconefile_A713745596
source SpringerLink Journals - AutoHoldings
subjects Ammonia
Ammonia-oxidizing bacteria
Ammonium
Ammonium compounds
Ammonium nitrogen
Anaerobic processes
Analysis
Bacteria
Brackishwater environment
Chemical analysis
Community composition
Community structure
Composition
Cores
Denitrification
Distribution
Earth and Environmental Science
Ecology
Ecotoxicology
Environment
Environmental factors
Environmental impact
Environmental Management
Estuaries
Estuarine dynamics
Estuarine environments
Fresh water
Freshwater
Gene sequencing
Inland water environment
Network analysis
Next-generation sequencing
Nitrate reduction
Nitrates
Organic carbon
Oxidation
Oxidation-reduction potential
Redox potential
Rivers
Salinity
Salinity effects
Salinity gradients
Seawater
Sediment
Sediments
Sediments (Geology)
Water analysis
Water depth
title Shift of DNRA bacterial community composition in sediment cores of the Pearl River Estuary and the impact of environmental factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shift%20of%20DNRA%20bacterial%20community%20composition%20in%20sediment%20cores%20of%20the%20Pearl%20River%20Estuary%20and%20the%20impact%20of%20environmental%20factors&rft.jtitle=Ecotoxicology%20(London)&rft.au=Hu,%20Yaohao&rft.date=2021-10-01&rft.volume=30&rft.issue=8&rft.spage=1689&rft.epage=1703&rft.pages=1689-1703&rft.issn=0963-9292&rft.eissn=1573-3017&rft_id=info:doi/10.1007/s10646-020-02321-1&rft_dat=%3Cgale_proqu%3EA713745596%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570668318&rft_id=info:pmid/33411163&rft_galeid=A713745596&rfr_iscdi=true